Skip to main content

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 134))

Abstract

We discuss two different types of Cellular Automata (CA): lattice-gas-based cellular automata (LGCA) and the cellular Potts model (CPM), and describe their applications in biological modeling.

LGCA were originally developed for modeling ideal gases and fluids. We describe several extensions of the classical LGCA model to self-driven biological cells. In particular, we review recent models for rippling in myxobacteria, cell aggregation, swarming, and limb bud formation. These LGCA-based models show the versatility of CA in modeling and their utility in addressing basic biological questions.

The CPM is a more sophisticated CA, which describes individual cells as extended objects of variable shape. We review various extensions to the original Potts model and describe their application to morphogenesis; the development of a complex spatial structure by a collection of cells. We focus on three phenomena: cell sorting in aggregates of embryonic chicken cells, morphological development of the slime mold Dictyostelium discoideum and avascular tumor growth. These models include intercellular and extracellular interactions, as well as cell growth and death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Adam and N. Bellomo, A survey of models for tumor-immune system dynamics, Birkhauser, Boston, 1997.

    MATH  Google Scholar 

  2. A. Adamatzky and O. Holland, Phenomenology of excitation in 2-D cellular automata and swarm systems, Chaos Solitons Fractals, 9 (1998), pp. 1233–1265.

    MathSciNet  MATH  Google Scholar 

  3. M. Alber and M. Kiskowski, On aggregation in CA models in biology, J. Phys. A: Math. Gen., 34 (2001), pp. 10707–10714.

    MathSciNet  MATH  Google Scholar 

  4. M. Alber, M. Kiskowski, and Y. Jiang, A model of rippling and aggregation in Myxobacteria, 2002 preprint.

    Google Scholar 

  5. B. Alberts, M. Raff, J. Watson, K. Roberts, D. Bray, and J. Lewis, Molecular biology of the cell, 3rd edition. Garland Publishing, NY, 1994.

    Google Scholar 

  6. J. Ashkin and E. Teller, Statistics of two-dimensional lattices with four components, Phys. Rev., 64 (1943), pp. 178–184.

    Google Scholar 

  7. E. Ben-Jacob, I. Cohen, A. Czirk, T. Vicsek, and D.L. Gutnick, Chemo-modulation of cellular movement, collective formation of vortices by swarming bacteria, and colonial development, Physica A, 238 (1997), pp. 181–197.

    Google Scholar 

  8. E. Ben-Jacob and H. Levine, The artistry of microorganisms, Scientific American, 279 (1998), pp. 82–87.

    Google Scholar 

  9. E. Ben-Jacob, I. Cohen, and H. Levine, Cooperative self-organization of microorganisms, Advances in Physics, 49 (2000), pp. 395–554.

    Google Scholar 

  10. L. Besseau and M. Giraud-Guille, Stabilization of ßuid cholesteric phases of collagen to ordered gelated matrices, J. Mol. Bio., 251 (1995), pp. 137–145.

    Google Scholar 

  11. D. Beysens, G. Forgacs, and J.A. Glazier, Cell sorting is analogous to phase ordering in fluids, Proc. Natl. Acad. Sci. USA 97 (2000) pp. 9467–9471.

    Google Scholar 

  12. H. Bode, K. Flick, and G. Smith, Regulation of interstitial cell-differentiation in Hydra attenuata. I. Homeostatic control of interstitial cell-population size, J. Cell Sci., 20 (1976), pp. 29–46.

    Google Scholar 

  13. E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm intelligence: From natural to artificial systems, Oxford University Press, NY, 1999.

    MATH  Google Scholar 

  14. J. Boon., D. Dab, R. Kapral, and A. Lawniczak, Lattice gas automata for relative systems, Physics Reports, 273 (1996), pp. 55–147.

    MathSciNet  Google Scholar 

  15. U. Börner, A. Deutsch, H. Reichenbach, and M. Bar, Rippling patterns in aggregates of myxobacteria arise from cell-cell collisions, 2002 preprint.

    Google Scholar 

  16. H. Bussemaker, A. Deutsch, and E. Geigant, Mean-field analysis of a dynamical phase transition in a cellular automaton model for collective motion, Phys. Rev. Lett., 78 (1997), pp. 5018–5027.

    Google Scholar 

  17. M. Caterina and P. Devreotes, Molecular insights into eukaryotic Chemotaxis, FASEB J., 5 (1991), pp. 3078–3085.

    Google Scholar 

  18. S. Chen, S.P. Dawson, G.D. Doolen, D.R. Janecky, and A. Lawniczak, Lattice methods and their applications to reacting systems. Computers & Chemical Engineering, 19 (1995), pp. 617–646.

    Google Scholar 

  19. B. Chopard and M. Droz, Cellular automata modeling of physical systems, Cambridge University Press, NY, 1998.

    MATH  Google Scholar 

  20. L Cohen, LG. Ron, and E. Ben-Jacob, From branching to nebula patterning during colonial development of the Paenibacillus alvei bacteria, Physica A, 286 (2000), pp. 321–336.

    Google Scholar 

  21. J. Cook, Waves of alignment in populations of interacting, oriented individuals. Forma, 10 (1995), pp. 171–203.

    MathSciNet  MATH  Google Scholar 

  22. J. Cook, A. Deutsch, and A. Mogilner, Models for spatio-angular self-organization in cell biology, in W. Alt, A. Deutsch and G. Dunn (Eds.) Dynamics of cell and tissue motion, Birkhuser, Basel, Switzerland, 1997, pp. 173–182.

    Google Scholar 

  23. M. Cross and P. Hohenberg, Pattern-formation outside of equilibrium, Rev. Mod. Phys., 65 (1993), pp. 851–1112.

    Google Scholar 

  24. A. Czirok, A. L. Barabasi, and T. Vicsek, Collective motion of organisms in three dimensions, Phys. Rev. Lett., 82 (1999), pp. 209–212.

    Google Scholar 

  25. J. Dallon and J. Sherratt, A mathematical model for spatially varying extra cellular matrix alignment, SIAM J. Appl. Math., 61 (2000), pp. 506–527.

    MathSciNet  MATH  Google Scholar 

  26. L.A. Davidson, M.A.R. Koehl, R. Keller, and G.F. Oster, How do sea-urchins invaginate — Using biomechanics to distinguish between mechanisms of primary invagination, Development, 121 (1995), pp. 2005–2018.

    Google Scholar 

  27. A.M. Delprato, A. Samadani, A. Kudrolli, and L.S. Tsimring, Swarming ring patterns in bacterial colonies exposed to ultraviolet radiation, Phys. Rev. Lett., 87 (2001), 158102.

    Google Scholar 

  28. A. Deutsch, Towards analyzing complex swarming patterns in biological systems with the help of lattice-gas automaton model, J. Biol. Syst., 3 (1995), pp. 947–955.

    Google Scholar 

  29. A. Deutsch, Orientation-induced pattern formation: Swarm dynamics in a lattice-gas automaton model. Int. J. Bifurc. Chaos, 6 (1996), pp. 1735–1752.

    MATH  Google Scholar 

  30. A. Deutsch, Principles of morphogenetic motion: swarming and aggregation viewed as self-organization phenomena, J. Biosc., 24 (1999), pp. 115–120.

    Google Scholar 

  31. A. Deutsch, Probabilistic lattice models of collective motion and aggregation: from individual to collective dynamics, Mathematical Biosciences, 156 (1999), pp. 255–269.

    MathSciNet  MATH  Google Scholar 

  32. A. Deutsch, A new mechanism of aggregation in a lattice-gas cellular automaton model. Mathematical and Computer Modeling, 31 (2000), pp. 35–40.

    MathSciNet  MATH  Google Scholar 

  33. A. Deutsch and S. Dormann, Cellular automata and biological pattern formation modeling, 2002 preprint.

    Google Scholar 

  34. S. Dormann, Pattern formation in cellular automation models, Dissertation, Angewandte Systemwissenschaft FB Mathematik/Informatik, Universität Osnabrück, Austria, 2000.

    Google Scholar 

  35. S. Dormann, A. Deutsch, and A. Lawniczak, Fourier analysis of Turing-like pattern formation in cellular automaton models. Future Computer Generation Systems, 17 (2001), pp. 901–909.

    MATH  Google Scholar 

  36. S. Dormann and A. Deutsch, Modeling of self-organized avascular tumor growth with a hybrid cellular automaton, Silico Biology, 2 (2002), 0035.

    Google Scholar 

  37. D. Drasdo and G. Forgacs, Modeling the interplay of generic and genetic mechanisms in cleavage, blastulation, and gastrulation, Developmental Dynamics, 219 (2000), pp. 182–191.

    Google Scholar 

  38. M. Dworkin and D. Kaiser, Myxobacteria II, American Society for Microbiology, Washington, DC, 1993.

    Google Scholar 

  39. M. Dworkin Recent advances in the social and developmental biology of the myxobacteria, Microbiol. Rev., 60 (1996), pp. 70–102.

    Google Scholar 

  40. M. Eden, Vol. 4: Contributions to biology and problems of medicine, in J. Neyman (Ed.), Proceedings of the Fourth Berkeley Symposium in Mathematics, Statistics and Probability, University of California Press, Berkeley, 1961, pp. 223–239.

    Google Scholar 

  41. R. Engelhardt, Modeling pattern formation in reaction diffusion systems. Master’s Thesis, Dept. of Chemistry, University of Copenhagen, Denmark, 1994.

    Google Scholar 

  42. G. Ermentrout and L. Edelstein-Keshet, Cellular automata approach in biological modeling, J. Theor. Biol., 160 (1993), pp. 97–133.

    Google Scholar 

  43. S.E. Esipov and J.A. Shapiro, Kinetic model of Proteus mirabilis swarm colony development, J. Math. Biol., 36 (1998), pp. 249–268.

    MathSciNet  MATH  Google Scholar 

  44. M. Fontes and D. Kaiser, Myxococcus cells respond to elastic forces in their substrate, Proc. Natl. Acad. Sci. USA, 96 (1999), pp. 8052–8057.

    Google Scholar 

  45. G. Forgacs, R. Foty, Y. Shafrir, and M. Steinberg, Viscoelastic properties of living embryonic tissues: a quantitative study, Biophys. J., 74 (1998), pp. 2227–2234.

    Google Scholar 

  46. R. Foty, G. Forgacs, C. Pfleger, and M. Steinberg, Liquid properties of embryonic tissues: measurements of interfacial tensions, Phys. Rev. Lett., 72 (1994), pp. 2298–2300.

    Google Scholar 

  47. R. Foty, C. Pfleger, G. Forgacs, and M. Steinberg, Surface tensions of embryonic tissues predict their mutual envelopment behavior, Development, 122 (1996), pp. 1611–1620.

    Google Scholar 

  48. J. Freyer and R. Sutherland, Selective dissociation and characterization of cells from different regions of multicell spheroids during growth. Cancer Research, 40 (1980), pp. 3956–3965.

    Google Scholar 

  49. J. Freyer and R. Sutherland, Regulation of growth saturation and development of necrosis in EMT6/RO multicellular spheroids induced by the glucose and oxygen supply. Cancer Research, 46 (1986), pp. 3504–3512.

    Google Scholar 

  50. M. Gardner, The fantastic combinations of John Conway’s new solitaire game ’life’. Scientific American, 223 (1970), pp. 120–123.

    Google Scholar 

  51. F. Gianocotti, Integrin-signaling: specificity and control of cell survival and cell cycle progression, Curr. Opin. Cell Biol, 9 (1997), pp. 691–700.

    Google Scholar 

  52. J.A. Glazier, Dynamics of cellular patterns, Ph.D. Thesis, The University of Chicago, USA, 1989.

    Google Scholar 

  53. J.A. Glazier and F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells, Phys. Rev. E, 47 (1993), pp. 2128–2154.

    Google Scholar 

  54. D. Godt and U. Tepass, Drosophila oocyte localization is mediated by differential cadherin-based adhesion. Nature, 395 (1998), pp. 387–391.

    Google Scholar 

  55. I. Golding, Y. Kozlovsky, I. Cohen, and E. Ben-Jacob, Studies of bacterial branching growth using reaction-diffusion models for colonial development, Physica A, 260 (1998), pp. 510–554.

    Google Scholar 

  56. A. Gonzalez-Reyes and D. St. Johnston, Patterning of the follicle cell epithe lium along the anterior-posterior axis during Drosophila oogenesis. Development, 125 (1998), pp. 2837–2846.

    Google Scholar 

  57. F. Graner and J.A. Glazier, Simulation of biological cell sorting using a two-dimensional Extended Potts Model, Phys. Rev. Lett., 69 (1992), pp. 2013–2016.

    Google Scholar 

  58. J. Hardy, O. de Pazzis, and Y. Pomeau, Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions, Phys. Rev. A, 13 (1976), pp. 1949–1961.

    Google Scholar 

  59. P. Hogeweg, Evolving mechanisms of morphogenesis: On the interplay between differential adhesion and cell differentiation, J. Theor. Biol., 203 (2000), pp. 317–333.

    Google Scholar 

  60. P. Hogeweg, Shapes in the shadow: Evolutionary dynamics of morphogenesis, Artificial Life, 6 (2000), pp. 611–648.

    Google Scholar 

  61. E. Holm, J.A. Glazier, D. Srolovitz, and G. Crest, Effects of lattice anisotropy and temperature on domain growth in the 2-dimensional Potts model, Phys. Rev. A, 43 (1991), pp. 2262–2268.

    Google Scholar 

  62. A. Howe, A. Aplin, S. Alahari, and R. Juliano, Integrin signaling and cell growth control, Curr. Opin. Cell Biol., 10 (1998), pp. 220–231.

    Google Scholar 

  63. O. Igoshin, A. Mogilner, D. Kaiser, and G. Oster, Pattern formation and traveling waves in myxobacteria: Theory and modeling, Proc. Natl. Acad. Sci. USA, 98 (2001), pp. 14913–14918.

    Google Scholar 

  64. L. Jelsbak and L. Sogaard-Andersen, The cell surface-associated intercellular C-signal induces behavioral changes in individual Myxococcus xanthus cells during fruiting body morphogenesis, Devel. Bio, 96 (1998), pp. 5031–5036.

    Google Scholar 

  65. L. Jelsbak and L. Sogaard-Andersen, Pattern formation: Fruiting body morphogenesis in Myxococcus xanthus. Current Opinion in Microbiology, 3 (2000), pp. 637–642.

    Google Scholar 

  66. Y. Jiang and J.A. Glazier, Extended large-Q Potts model simulation of foam drainage, Philos. Mag. Lett., 74 (1996), pp. 119–128.

    Google Scholar 

  67. Y. Jiang, Cellular pattern formation, Ph.D. Thesis, University of Notre Dame, USA, 1998.

    Google Scholar 

  68. Y. Jiang, H. Levine, and J.A. Glazier, Possible cooperation of differential adhesion and Chemotaxis in mound formation of Dictyostelium, Biophys. J., 75 (1998), pp. 2615–2625.

    Google Scholar 

  69. B. Julien, D. Kaiser, and A. Garza, Spatial control of cell differentiation in Myxococcus xanthus, Proc. Natl. Acad. Sci. USA, 97 (2000), pp. 9098–9103.

    Google Scholar 

  70. L.P. Kadanoff, G.R. McNamara, and G. Zanetti, From automata to fluid-flow-Comparisons óf simulation and theory, Phys. Rev. A, 40 (1989), pp. 4527–4541.

    Google Scholar 

  71. D. Kaiser, How and why myxobacteria talk to each other, Current Opinion in Microbiology, 1 (1998), pp. 663–668.

    MathSciNet  Google Scholar 

  72. D. Kaiser, Intercellular signaling for multicellular morphogenesis, Society for General Microbiology Symposium 57, Cambridge University Press, Society for General Microbiology Ltd., UK, 1999.

    Google Scholar 

  73. A. Kansal, S. Torquato, E. Chiocca, and T. Deisboeck, Emergence of a sub-population in a computational model of tumor growth, J. Theor. Biol., 207 (2000), pp. 431–441.

    Google Scholar 

  74. N. Kataoka, K. Saito, and Y. Sawada, NMR microimaging of the cell sorting process, Phys. Rev. Lett., 82 (1999), pp. 1075–1078.

    Google Scholar 

  75. E.F. Keller and L.A. Segal, Initiation of slime mold aggregation viewed as an instability, J. Theor. Bio., 26 (1970), pp. 399–415.

    Google Scholar 

  76. P. Kiberstis and J. Marx, Frontiers in cancer research, Science, 278 (1977), pp. 1035–1035.

    Google Scholar 

  77. S. Kim and D. Kaiser, Cell alignment in differentiation of Myxococcus xanthus, Science, 249 (1990), pp. 926–928.

    Google Scholar 

  78. S. Kim and D. Kaiser, C-factor has distinct aggregation and sporulation thresholds during Myxococcus development, J. Bacteriol., 173 (1991), pp. 1722–1728.

    Google Scholar 

  79. M. Kiskowski, M. Alber, G. Thomas, J. Glazier, N. Bronstein, and S. Newman, Interaction between reaction-diffusion process and cell-matrix adhesion in a cellular automata model for chondrogenic pattern formation: a prototype study for developmental modeling, 2002, in preparation.

    Google Scholar 

  80. J. Kuner and D. Kaiser, Fruiting body morphogenesis in submerged cultures of Myxococcus xanthus, J. Bacteriol., 151 (1982), pp. 458–46L

    Google Scholar 

  81. S. Kyriacou, C. Davatzikos, S. Zinreich, and R. Bryan, Nonlinear elastic registration of brain images with tumor pathology using a biomechanical model, IEEE Transactions On Medical Imaging, 18 (1999), pp. 580–592.

    Google Scholar 

  82. J. Landry, J. Freyer, and R. Sutherland, A model for the growth of multicellular spheroids, Cell Tiss. Kinet., 15 (1982), pp. 585–594.

    Google Scholar 

  83. C. Leonard, H. Fuld, D. Frenz, S. Downie, Massagué, and S. Newman, Role of transforming growth factor-β in chondrogenic pattern formation in the embryonic limb: Stimulation of mesenchymal condensation and fibronectin gene expression by exogenous TGF-β-like activity, Devel. Bio., 145 (1991), pp. 99–109.

    Google Scholar 

  84. H. Levine, I. Aranson, L. Tsimring, and T. Truong, Positive genetic feedback governs CAMP spiral wave formation in Dictyostelium, Proc. Natl. Acad. Sci. USA, 93 (1996), pp. 6382–6386.

    Google Scholar 

  85. A. Nicol, W.J. Rappel, H. Levine, and W.F. Loomis, Cell-sorting in aggregates of Dictyostelium discoideum, J. Cell. Sci., 112 (1999), pp. 3923–3929.

    Google Scholar 

  86. H. Levine, W-J. Rappel, and I. Cohen, Self-organization in systems of self-propelled particles, Phys. Rev. E, 63 (2001), 017101.

    Google Scholar 

  87. S. Li, B. Lee and L. Shimkets, csgA expression entrains Myxococcus Xanthus development. Genes Development, 6 (1992), pp. 401–410.

    Google Scholar 

  88. W. Loomis, Lateral inhibition and pattern formation in Dictyostelium, Curr. Top. Dev. Biol., 28 (1995), pp. 1–46.

    Google Scholar 

  89. F. Lutscher, Modeling alignment and movement of animals and cells, J. Math. Biol., DOI: 10.1007/s002850200146, 2002.

    Google Scholar 

  90. F. Lutscher and A. Stevens, Emerging patterns in a hyperbolic model for locally interacting cell systems. Journal of Nonlinear Sciences, 2002 preprint.

    Google Scholar 

  91. P. Maini, Mathematical models in morphogenesis, pp. 151–189. In V. Capasso and O. Dieckmann (Eds.), Mathematics Inspired Biology, Springer, Berlin, 1999.

    Google Scholar 

  92. A. Maree, A. Panfilov, and P. Hogeweg, Migration and thermotaxis of Dictyostelium discoideum slugs, a model study, J. Theor. Biol., 199 (1999), pp. 297–309.

    Google Scholar 

  93. A. Maree, From pattern formation to morphogenesis: Multicellular coordination in Dictyostelium discoideum, Ph.D. Thesis., Utrecht University, the Netherlands, 2000.

    Google Scholar 

  94. A. Maree and P. Hogeweg, How amoeboids self-organize into a fruiting body: Multicellular coordination in Dictyostelium discoideum, Proc. Natl. Acad. Sci. USA, 98 (2001), pp. 3879–3883.

    Google Scholar 

  95. M. Marusic, Z. Bajzer, J. Freyer, and S. Vuk-Pavlovic, Modeling autostimulation of growth in multicellular tumor spheroids. Int. J. Biomed. Comput., 29 (1991), pp. 149–158.

    Google Scholar 

  96. M. Marusic, Z. Bajzer, J. Freyer, and S. Vuk-Pavlovic, Analysis of growth of multicellular tumor spheroids by mathematical models. Cell Prolif., 27 (1994), pp. 73–94.

    Google Scholar 

  97. J. Marrs and W. Nelson, Cadherin cell adhesion molecules in differentiation and embryogenesis. Int. Rev. Cytol., 165 (1996), pp. 159–205.

    Google Scholar 

  98. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, Combinatorial minimization, J. Chem. Phys., 21 (1953), pp. 1087–1092.

    Google Scholar 

  99. A. Mogilner and L. Edelstein-Keshet, Spatio-angular order in populations of self-aligning objects: formation of oriented patches, Physica D, 89 (1996), pp. 346–367.

    MathSciNet  MATH  Google Scholar 

  100. A. Mogilner, L. Edelstein-Keshet, and G. Ermentrout, Selecting a common direction. II. Peak-like solutions representing total alignment of cell clusters, J. Math. Biol., 34 (1996), pp. 811–842.

    MathSciNet  MATH  Google Scholar 

  101. A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, J. Math. Biol., 38 (1999), pp. 534–570.

    MathSciNet  MATH  Google Scholar 

  102. J. Mombach, J.A. Glazier, R. Raphael, and M. Zajac, Quantitative comparison between differential adhesion models and cell sorting in the presence and absence of ßuctuations, Phys. Rev. Lett., 75 (1995), pp. 2244–2247.

    Google Scholar 

  103. J. Mombach and J.A. Glazier, Single cell motion in aggregates of embryonic cells, Phys. Rev. Lett., 76 (1996), pp. 3032–3035.

    Google Scholar 

  104. F. Monier-Gavelle and J. Duband, Cross talk between adhesion molecules: Control of N-cadherin activity by intracellular signals elicited by beta 1 and beta 3 integrins in migrating neural crest cells, J. Cell. Biol., 137 (1997), pp. 1663–1681.

    Google Scholar 

  105. J. Murray, Mathematical biology, Biomathematics 19, Springer, New York, 1989.

    MATH  Google Scholar 

  106. V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology, J. Theor. Bio., 42 (1973), pp. 63–105.

    Google Scholar 

  107. S. Newman and H. Frisch, Dynamics of skeletal pattern formation in developing chick limb. Science, 205 (1979), pp. 662–668.

    Google Scholar 

  108. S. Newman, Sticky fingers: Hox genes and cell adhesion in vertebrate development, Bioessays, 18 (1996), pp. 171–174.

    Google Scholar 

  109. K. O’Connor and D. Zusman, Patterns of cellular interactions during fruiting-body formation in Myxococcus xanthus, J. Bacteriol., 171 (1989), pp. 6013–6024.

    Google Scholar 

  110. G.M. Odell and J.T. Bonner, How the Dictyostelium discoideum grex crawls, Philos. Trans. Roy. Soc. London, B., 312 (1985), pp. 487–525.

    Google Scholar 

  111. C. Ofria, C. Adami, T.C. Collier, and G.K. Hsu, E volution of differentiated expression patterns in digital organisms; Lect. Notes Artif. Intell., 1674 (1999), pp. 129–138.

    Google Scholar 

  112. H.G. Othmer, S. Dunbar, and W. Alt, Models of dispersal in biological systems, J. Math. Biol., 26 (1988), pp. 263–298.

    MathSciNet  MATH  Google Scholar 

  113. H.G. Othmer and T. Hillen, The diffusion limit of transport equations II: Chemotaxis equations, SIAM J. Appl. Math., 62 (2002), pp. 1222–1250.

    MathSciNet  MATH  Google Scholar 

  114. J.K. Parrish and W. Hamner, (Eds.), Animal groups in three dimensions, Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  115. J.K. Parrish and L. Edelstein-Keshet, From individuals to aggregations: Complexity, epiphenomena, and evolutionary trade-offs of animal aggregation, Science, 284 (1999), pp. 99–101.

    Google Scholar 

  116. A. Pelizzola, Low-temperature phase of the three-state antiferromagnetic Potts model on the simple-cubic lattice, Phys. Rev. E, 54 (1996), pp. R5885-R5888.

    Google Scholar 

  117. J. Pjesivac and Y. Jiang, A cellular model for avascular tumor growth, unpublished (2002).

    Google Scholar 

  118. T. Pollard and J. Cooper, Actin and act in-binding proteins. A critical evaluation of mechanisms and function, Ann. Rev. Biochem., 55 (1986), pp. 987–1035.

    Google Scholar 

  119. R. Potts, Some generalized order-disorder transformations, Proc. Cambridge Phil. Soc., 48 (1952), pp. 106–109.

    MathSciNet  MATH  Google Scholar 

  120. I. Prigogine and R. Herman, Kinetic theory of vehicular traffic, American Elsevier, New York, 1971.

    MATH  Google Scholar 

  121. S. Rahman, E. Rush, and R. Swendsen, Intermediate-temperature ordering in a three-state antiferromagnetic Potts model, Phys. Rev. B. 58 (1998). pp. 9125–9130.

    Google Scholar 

  122. W.J. Rappel, A. Nicol, A. Sarkissian, H. Levine, and W.F. Loomis Self-organized vortex state in two-dimensional Dictyostelium dynamics, Phys. Rev. Lett., 83 (1999), pp. 1247–1250.

    Google Scholar 

  123. H. Reichenbach, Myxobacteria: A most peculiar group of social prokaryotes, in Myxobacteria development and cell interactions, E. Rosenburg (Ed.) Springer-Verlag, NY, 1984, pp. 1–50.

    Google Scholar 

  124. C.W. Reynolds, Flocks, herds, and schools: A distributed behavioral model, ACM Computer Graphics, SIGGRAPH ’87, 21 (1987), pp. 25–34.

    Google Scholar 

  125. D. Richardson Random growth in a tessellation, Proc. Camb. Phil. Soc., 74 (1973), pp. 563–573.

    Google Scholar 

  126. J. Rieu, A. Upadhyaya, J.A. Glazier, N. Ouchi, and Y. Sawada, Diffusion and deformations of single hydra cells in cellular aggregates, Biophys. J, 79 (2000), pp. 1903–1914.

    Google Scholar 

  127. J. Rubin and A. Robertson, The tip of the Dictyostelium pseudoplasmodium as an organizer, J. Embryol. Exp. Morphol., 33 (1975), pp. 227–241.

    Google Scholar 

  128. B. Sager and D. Kaiser, Two cell-density domains within the Myxococcus xanthus fruiting body, Proc. Natl. Acad. Sci., 90 (1993), pp. 3690–3694.

    Google Scholar 

  129. B. Sager and D. Kaiser, Intercellular C-signaling and the traveling waves of Myxococcus xanthus. Genes Development, 8 (1994), pp. 2793–2804.

    Google Scholar 

  130. P. Sahni, G. Grest, M. Anderson, and D. Srolovitz, Kinetics of the Q-state Potts model in 2 dimensions, Phys. Rev. Lett., 50 (1983), pp. 263–266.

    Google Scholar 

  131. D. Srolovitz, M. Anderson, G. Grest, and P. Sahni, Grain-growth in 2 dimensions, Scripta Met., 17 (1983), pp. 241–246.

    Google Scholar 

  132. D. Srolovitz, M. Anderson, G. Grest, and P. Sahni, Computer-simulation of grain-growth. 2. Grain-size distribution, topology, and local dynamics. Acta Met., 32 (1984), pp. 793–802.

    Google Scholar 

  133. D. Srolovitz, M. Anderson, G. Grest, and P. Sahni, Computer-simulation of grain-growth. 3. Influence of a particle dispersion. Acta Met., 32 (1984), pp. 1429–1438.

    Google Scholar 

  134. G. Grest, D. Srolovitz, and M. Anderson, Kinetics of domain growth: universality of kinetic exponents, Phys. Rev. Letts,. 52 (1984), pp. 1321–1329.

    Google Scholar 

  135. D. Srolovitz, G. Grest, and M. Anderson, Computer-simulation of grain growth. 5. Abnormal grain-growth, Acta Met., 33 (1985), pp. 2233–2247.

    Google Scholar 

  136. N. Savill and p. Hogeweg, Modelling morphogenesis: From single cells to crawling slugs, J. Theor. Bio., 184 (1997), pp. 229–235.

    Google Scholar 

  137. M. scalerandi, B. Sansone, and C. Condat, Diffusion with evolving sources and competing sinks: Development of angiogenesis, Phys. Rev. E, 65 (2002), 011902.

    Google Scholar 

  138. J.A. Shapiro, Bacteria as multicellular organisms. Scientific American, 258 (1988), pp. 82–89.

    Google Scholar 

  139. J. A. Shapiro, The significances of bacterial colony patterns, Bioessays, 17 (1995), pp. 597–607.

    Google Scholar 

  140. J.A. Shapiro, Thinking about bacterial populations as multicellular organisms, Annual Review of Microbiology, 52 (1998), pp. 81–104.

    Google Scholar 

  141. N. Shimoyama, K. Sugawara, T. Mizuguchi, Y. Hayakawa, and M. Sano, Collective motion in a system of motile elements, Phys. Rev. Lett., 76 (1996), pp. 3870–3873.

    Google Scholar 

  142. E. Siggia, Late stages of spinodal decomposition in binary mixtures, Phys. Rev. A, 20 (1979), pp. 595–605.

    Google Scholar 

  143. S. Simpson, A. McCaffery, and B. Hagele, A behavioural analysis of phase change in the desert locust. Bio. Rev. of the Cambridge Philosophical Society, 74 (1999), pp. 461–480.

    Google Scholar 

  144. D. Soll, Computer-assisted three-dimensional reconstruction and motion analysis of living, crawling cells, Computerized Medical Imaging and Graphics, 23 (1999), pp. 3–14.

    Google Scholar 

  145. D. Soll, E. Voss, O. Johnson, and D. Wessels, Three-dimensional reconstruction and motion analysis of living, crawling cells, Scanning, 22 (2000), pp. 249–257.

    Google Scholar 

  146. J. Stavans, The evolution of cellular structures. Rep. Prog. Phys., 56 (1993), pp. 733–789.

    Google Scholar 

  147. M. Steinberg, Mechanism of tissue reconstruction by dissociated cells, II. Time-course of events. Science, 137 (1962), pp. 762–763.

    Google Scholar 

  148. M. Steinberg, Cell membranes in development. Academic Press, NY, 1964.

    Google Scholar 

  149. A. Stevens, A stochastic cellular automaton modeling gliding and aggregation of Myxobacteria, SIAM J. Appl. Math., 61 (2000), pp. 172–182.

    MathSciNet  MATH  Google Scholar 

  150. E. Stott, N. Britton, J. A. Glazier, and M. Zajac, Stochastic simulation of benign avascular tumour growth using the Potts model, Mathematical and Computer Modelling, 30 (1999), pp. 183–198.

    Google Scholar 

  151. U. Technau and T. Holstein, Cell sorting during the regeneration of hydra from reaggregated cells, Devel. Bio, 151 (1992), pp. 117–127.

    Google Scholar 

  152. D. Thompson, On growth and form, Cambridge University Press, Cambridge, 1942.

    MATH  Google Scholar 

  153. A. Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. London, 237 (1952), pp. 37–72.

    Google Scholar 

  154. A. Upadhyaya, Thermodynamics and fluid properties of cells, tissues and membranes, Ph.D. Thesis., The University of Notre Dame, USA, 2001.

    Google Scholar 

  155. A. Upadhyaya, J. Rieu, J. A. Glazier and Y. Sawada, Anomalous diffusion and non-Gaussian velocity distribution of Hydra cells in cellular aggregates, Physica A, 293 (2001), pp. 49–558.

    Google Scholar 

  156. P. Van Haaster, Sensory adaptation of Dictyostelium discoideum cells to chemotactic signals, J. Cell Biol., 96 (1983), pp. 1559–1565.

    Google Scholar 

  157. B. Vasiev, F. Siegert and C.J. Weijer, A hydrodynamic model approach for Dictyostelium mound formation, J. Theor. Biol., 184 (1997), pp. 441–450.

    Google Scholar 

  158. T. Vicsek, A. Czirok, E. Ben-Jacob, I Cohen, O. Shochet, and A. Tenenbaum, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), pp. 1226–1229.

    Google Scholar 

  159. J. von Neumann, Theory of self-reproducing automata, (edited and completed by A. W. Burks), University of Illinois Press, Urbana, 1966.

    Google Scholar 

  160. J. Wartiovaara, M. Karkinen-Jääskelänen, E. Lehtonen, S. Nordling, and L. Saxen, Morphogenetic cell interactions in kidney development, in N. Müller-Bér) (Ed.), Progress in differentiation research. North-Holland Publishing Company, Amsterdam, 1976, 245–252.

    Google Scholar 

  161. D. Weaire and N. Rivier, Soap, cells and statistics: random patterns in 2 dimensions, Contemp. Phys. 25 (1984) pp. 59–99.

    Google Scholar 

  162. H. Williams, S. Desjardins, and F. Billings, Two-dimensional growth models, Phys. Lett. A, 250 (1998), pp. 105–110.

    Google Scholar 

  163. J. Williams, Regulation of cellular differentiation during Dictyostelium morphogenesis, Curr. Opin. Genet. Dev., 1 (1991), pp. 338–362.

    Google Scholar 

  164. J. Wejchert, D. Weaire, and J. Kermode, Monte-Carlo simulation of the evolution of a two-dimensional soap froth, Phil. Mag. B, 53 (1986), pp. 15–24.

    Google Scholar 

  165. R. Welch and D. Kaiser, Cell behavior in traveling wave patterns of myxobacteria, Proc. Natl. Acad. Sci. USA, 98 (2001), pp. 14907–14912.

    Google Scholar 

  166. T. Witten and L. Sander, Diffusion-limited aggregation, Phys. Rev. B, 27 (1983), pp. 5686–5697.

    MathSciNet  Google Scholar 

  167. D. Wolf-Gladrow, Lattice-gas cellular automata and lattice Boltzmann models — An introduction. Springer-Ver lag, Berlin, Lecture Notes in Mathematics 1725 (2000).

    MATH  Google Scholar 

  168. S. Wolfram, Statistical mechanics of cellular automata. Rev. Mod. Phys., 55 (1983), pp. 601–604.

    MathSciNet  MATH  Google Scholar 

  169. S. Wolfram, Cellular automata and complexity, Addison-Wesley, Reading, 1994.

    MATH  Google Scholar 

  170. S. Wolfram, A new kind of science, Wolfram Media, Champaign, 2002.

    MATH  Google Scholar 

  171. C. wolgemuth and E. Hoiczyk, How Myxohactevia glide. Current Biology, 12 (2002), pp. 369–377.

    Google Scholar 

  172. F. Wu, The Potts-model, Rev. Mod. Phys., 54 (1982), pp. 235–268.

    Google Scholar 

  173. M. Zajac, G. Jones, and J.A. Glazier, Model of convergent extension in animal morphogenesis, Phys. Rev. Lett., 85 (2000), pp. 2022–2025.

    Google Scholar 

  174. M. Zajac, Modeling convergent extension by way of anisotropic differential adhesion. Ph.D. thesis. The University of Notre Dame, USA, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Alber, M.S., Kiskowski, M.A., Glazier, J.A., Jiang, Y. (2003). On Cellular Automaton Approaches to Modeling Biological Cells. In: Rosenthal, J., Gilliam, D.S. (eds) Mathematical Systems Theory in Biology, Communications, Computation, and Finance. The IMA Volumes in Mathematics and its Applications, vol 134. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21696-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21696-6_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2326-4

  • Online ISBN: 978-0-387-21696-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics