Advertisement

Flagellar Motion

Chapter
  • 668 Downloads
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

Whether a cell runs or tumbles depends on the direction of rotation of its flagella, but the story turns out to be rather complicated. A tumble involves not only a change in the direction of rotation of one or more of the flagellar filaments, but also a sequence of changes in their handedness and pitch.

Keywords

Rotary Motor Flagellar Motion Flagellar Filament Cell Swim Helical Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berg, H. C. 1976. Does the flagellar rotary motor step? In: Cell Motility. R. Goldman, T. Pollard, T. Rosenbaum, editors. Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, pp. 47–56.Google Scholar
  2. Berg, H. C., and R. A. Anderson. 1973. Bacteria swim by rotating their flagellar filaments. Nature 245:380–382.CrossRefADSGoogle Scholar
  3. Calladine, C. R. 1978. Change in waveform in bacterial flagella: the role of mechanics at the molecular level. J. Mol. Biol 118:457–479.CrossRefGoogle Scholar
  4. Hasegawa, K., I. Yamashita, and K. Namba. 1998. Quasiand nonequivalence in the structure of bacterial flagellar filament. Biophys. J. 74: 569–575.CrossRefADSGoogle Scholar
  5. Hotani, H. 1982. Micro-video study of moving bacterial flagellar filaments III. Cyclic transformation induced by mechanical force. J. Mol. Biol. 156:791–806.CrossRefADSGoogle Scholar
  6. Larsen, S. H., R. W. Reader, E. N. Kort, W. Tso, and J. Adler. 1974. Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature 249:74–77.CrossRefADSGoogle Scholar
  7. Macnab, R. M. 1977. Bacterial flagella rotating in bundles: a study in helical geometry. Proc. Natl. Acad. Sci. USA 74:221–225.CrossRefADSGoogle Scholar
  8. Macnab, R. M., and D. E. Koshland, Jr. 1972. The gradient-sensing mechanism in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 69:2509–2512.CrossRefADSGoogle Scholar
  9. Macnab, R.M., and M.K. Ornston. 1977. Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force. J. Mol. Biol. 112:1–30.CrossRefGoogle Scholar
  10. Namba, K., and F. Vonderviszt. 1997. Molecular architecture of bacterial flagellum. Q. Rev. Biophys. 30:1–65.CrossRefGoogle Scholar
  11. Silverman, M., and M. Simon. 1974. Flagellar rotation and the mechanism of bacterial motility. Nature 249:73–74.CrossRefADSGoogle Scholar
  12. Turner, L., W. S. Ryu, and H. C. Berg. 2000. Real-time imaging of fluorescent flagellar filaments. J. Bacteriol. 182:2793–2801.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 2004

Personalised recommendations