E. coli in Motion pp 105-120 | Cite as
Rotary Motor
Chapter
- 657 Downloads
Abstract
The structure of the rotary motor was described in Chapter 9 (Fig. 9.3) and its assembly was discussed in Chapter 10. Here, I will say more about function. Given that the diameter of the motor is less than one-tenth the wavelength of light and that it contains more than 20 of different kinds of parts (Appendix, Table A.3), it is a nanotechnologist’s dream (or nightmare).
Keywords
Duty Ratio Latex Bead Load Line Rotary Motor Torque Generator
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- Asai, Y., T. Yakushi, I. Kawagishi, and M. Homma. 2003. Ion-coupling determinants of Na+-driven and H+-driven flagellar motors. J. Mol. Biol. 327:453–463.CrossRefGoogle Scholar
- Berg, H. C. 1976. Does the flagellar rotary motor step? In: Cell Motility, Cold Spring Harbor Conferences on Cell Proliferation. R. Goldman, T. Pollard, J. Rosenbaum, editors. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY., pp. 47–56.Google Scholar
- Berg, H. C. 2000. Constraints on models for the flagellar rotary motor. Philos. Trans. R. Soc. Lond. B 355:491–501.CrossRefGoogle Scholar
- Berg, H. C. 2003. The rotary motor of bacterial flagella. Anna. Rev. Biochem, 72:19–54.CrossRefGoogle Scholar
- Berg, H. C., and L. Turner. 1979. Movement of microorganisms in viscous environments. Nature 278:349–351.CrossRefADSGoogle Scholar
- Berg, H. C., and L. Turner. 1993. Torque generated by the flagellar motor of Escherichia coli. Biophys. J. 65:2201–2216.ADSCrossRefGoogle Scholar
- Berry, R. B. 2000. Theories of rotary motors. Philos. Trans. R. Soc. Lond. B 355:503–509.CrossRefGoogle Scholar
- Berry, R. B. 2003. The bacterial flagellar motor. In: Molecular Motors. M. Schliwa, editor. Wiley-VCH, Weinheim, pp. 111–140.Google Scholar
- Berry, R. B., and J. P. Armitage. 1999. The bacterial flagella motor. Adv. Microbiol. Physiol. 41:291–337.CrossRefGoogle Scholar
- Berry, R. M., and H. C. Berg. 1997. Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers. Proc. Natl. Acad. Sci. USA 94:14433–14437.CrossRefADSGoogle Scholar
- Berry, R. M., and H. C. Berg. 1999. Torque generated by the flagellar motor of Escherichia coli while driven backward. Biophys. J. 76: 580–587.CrossRefADSGoogle Scholar
- Blair, D. F. 2003. Flagellar movement driven by proton translocation. FEBS Lett. 545:86–95.CrossRefGoogle Scholar
- Blair, D. F., and H. C. Berg. 1988. Restoration of torque in defective flagellar motors. Science 242:1678–1681.CrossRefADSGoogle Scholar
- Block, S. M., D. F. Blair, and H. C. Berg. 1989. Compliance of bacterial flagella measured with optical tweezers. Nature 338:514–517.CrossRefADSGoogle Scholar
- Braun, T. F., and Blair, D. F. 2001. Targeted disulfide cross-linking of the MotB protein of Escherichia coli: evidence for two H+ channels in the stator complex. Biochemistry 40:13051–13059.CrossRefGoogle Scholar
- Braun, T. F., S. Poulson, J. B. Gully, et al. 1999. Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli. J. Bacteriol. 181:3542–3551. Bustamante, C., D. Keller, and G. Oster. 2001. The physics of molecular motors. Acc. Chem. Res. 34:412–420.Google Scholar
- Caplan, S. R., and M. Kara-Ivanov. 1993. The bacterial flagellar motor. Int. Rev. Cytol. 147:97–164.CrossRefGoogle Scholar
- Chen, X., and H. C. Berg. 2000a. Torque-speed relationship of the flagellar rotary motor of Escherichia coli. Biophys. J. 78:1036–1041.ADSCrossRefGoogle Scholar
- Chen, X., and H. C. Berg. 2000b. Solvent-isotope and pH effects on flagellar rotation in Escherichia coli. Biophys. J. 78:2280–2284.ADSCrossRefGoogle Scholar
- Fung, D. C., and H. C. Berg. 1995. Powering the flagellar motor of Escherichia coli with an external voltage source. Nature 375:809–812.CrossRefADSGoogle Scholar
- Gabel, C.V., and H. C. Berg. 2003. The speed of the flagellar rotary motor of Escherichia coli varies linearly with protonmotive force. Proc. Natl. Acad. Sci. USA 100:8748–8751.CrossRefADSGoogle Scholar
- Garcia de la Torre, J., and V. A. Bloomfield. 1981. Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications. Q. Rev. Biophys. 14:81–139.CrossRefGoogle Scholar
- Harold, F. M., and P. C. Maloney. 1996. Energy transduction by ion currents. In: Escherichia coli and Salmonella: Cellular and Molecular Biology. F. C. Neidhardt, R. Curtiss, J. L. Ingraham, et al., editors. ASM Press, Washington DC, pp. 283–306.Google Scholar
- Howard, J. 2001. Mechanics of Motor Proteins and the Cytoskeleton. Sinaur Associates, Sunderland, MA.Google Scholar
- Imae, Y. 1991. Use of Na+ as an alternative to H+ in energy transduction. In: New Era of Bioenergetics. Y. Mukohata, editor. Academic Press, Tokyo, pp. 197–221.Google Scholar
- Imae, Y., and T. Atsumi. 1989. Na+-driven bacterial flagellar motors. J. Bioenerg. Biomembr. 21:705–716.CrossRefGoogle Scholar
- Jeffery, G. B. 1915. On the steady rotation of a solid of revolution in a viscous fluid. Proc. Lond. Math. Soc. 14:327–338.Google Scholar
- Khan, S. 1997. Rotary chemiosmotic machines. Biochim. Biophys. Acta 1322:86–105.CrossRefGoogle Scholar
- Khan, S., and H. C. Berg. 1983. Isotope and thermal effects in chemiosmotic coupling to the flagellar motor of Streptococcus. Cell 32:913–919.CrossRefGoogle Scholar
- Khan, S., M. Meister, and H. C. Berg. 1985. Constraints on flagellar rotation. J. Mol. Biol. 184:645–656.CrossRefGoogle Scholar
- Kojima, S., and D. F. Blair 2001. Conformational change in the stator of the bacterial flagellar motor. Biochemistry 40:13041–13050.CrossRefGoogle Scholar
- Larsen, S. H., J. Adler, J. J. Gargus, and R. W. Hogg. 1974. Chemomechanical coupling without ATP: the source of energy for motility and chemotaxis in bacteria. Proc. Natl. Acad. Sci. USA 71:1239–1243.CrossRefADSGoogle Scholar
- Läuger, P., and B. Kleutsch. 1990. Microscopic models of the bacterial flagellar motor. Comments Theor. Biol. 2:99–123.Google Scholar
- Lloyd, S. A., and D. F. Blair. 1997. Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli. J. Mol. Biol. 266:733–744.CrossRefGoogle Scholar
- Lowe, G., M. Meister, and H. C. Berg. 1987. Rapid rotation of flagellar bundles in swimming bacteria. Nature 325:637–640.CrossRefADSGoogle Scholar
- Macnab, R. M. 1996. Flagella and motility. In: Escherichia coli and Salmonella: Cellular and Molecular Biology. F. C. Neidhardt, R. Curtiss, J. L. Ingraham, et al., editors. ASM Press, Washington, DC, pp. 123–145.Google Scholar
- McCarter, L. L. 2001. Polar flagellar motility of the Vibrionaceae. Microbiol. Mol. Biol. Rev. 65:445–462.Google Scholar
- Meister, M., G. Lowe, and H. C. Berg. 1987. The proton flux through the bacterial flagellar motor. Cell 49:643–650.CrossRefGoogle Scholar
- Ravid, S., and M. Eisenbach. 1984. Minimal requirements for rotation of bacterial flagella. J. Bacteriol. 158:1208–1210.Google Scholar
- Samuel, A. D.T., and H. C. Berg. 1995. Fluctuation analysis of rotational speeds of the bacterial flagellar motor. Proc. Natl. Acad. Sci. USA 92: 3502–3506.CrossRefADSGoogle Scholar
- Samuel, A. D. T., and H. C. Berg. 1996. Torque-generating units of the bacterial flagellar motor step independently. Biophys. J. 71:918–923.ADSCrossRefGoogle Scholar
- Schuster, S. C., and S. Khan. 1994. The bacterial flagellar motor. Annu. Rev. Biophys. Biomol. Struct. 23:509–539.CrossRefGoogle Scholar
- van der Drift, C., J. Duiverman, H. Bexkens, and A. Krijnen. 1975. Chemotaxis of a motile Streptococcus toward sugars and amino acids. J. Bacteriol. 124:1142–1147.Google Scholar
- Washizu, M., Y. Kurahashi, H. Iochi, et al. 1993. Dielectrophoretic measurement of bacterial motor characteristics. IEEE Trans. Ind. Appl. 29:286–294.CrossRefGoogle Scholar
- Yorimitsu, T., and M. Homma. 2001. Na+-driven flagellar motor of Vibrio. Biochim. Biophys. Acta 1505:82–93.CrossRefGoogle Scholar
- Zhou, J., S. A. Lloyd, and D. F Blair. 1998a. Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proc. Natl. Acad. Sci. USA 95:6436–6441.CrossRefADSGoogle Scholar
- Zhou, J., L. L. Sharp, H. L. Tang, et al. 1998b. Function of protonatable residues in the flagellar motor of Escherichia coli: a critical role for Asp 32 of MotB. J. Bacteriol. 180:2729–2735.Google Scholar
Copyright information
© Springer-Verlag New York, Inc. 2004