Skip to main content

Gain Paradox

  • Chapter
E. coli in Motion

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 972 Accesses

Abstract

Data obtained early on suggested that the chemotactic response is proportional to the change in receptor occupancy, with that occupancy characterized by a fixed dissociation constant, K d, the concentration of ligand at which the probability of receptor occupancy is 1/2 (Berg and Tedesco, 1975; Mesibov et al., 1973). Then it became evident that the dissociation constant increases (i.e., cells become less sensitive) at higher concentrations of ligand, as receptors are methylated (Borkovich et al., 1992; Bornhorst and Falke, 2000; Dunten and Koshland 1991; Li and Weis, 2000). However, even at these higher concentrations (e.g., for the nonmetabolizable aspartate analog α-methylaspartate at an ambient concentration of 0.16 mM) the gain is prodigious: a step increase in concentration from 0.16 to 0.16 + 0.0027 mM (a change of about 1.7%) transiently increases the probability that the motor spins counterclockwise (CCW) by 0.23 (Segall et al., 1986). Computer simulations of the chemotaxis system (e.g., Bray et al., 1993; reviewed by Bray, 2002) fail to predict the necessary gain. Two recent findings appear to resolve the paradox. First, there is an amplification step at the beginning of the signaling pathway: the fractional change in kinase activity is some 35 times larger than the fractional change in receptor occupancy (Sourjik and Berg, 2002a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alon, U., M. G. Surette, N. Barkai, and S. Leibler. 1999. Robustness in bacterial chemotaxis. Nature 397:168–171.

    Article  ADS  Google Scholar 

  • Ames, P., C. A. Studdert, R. H. Reiser, and J. S. Parkinson. 2002. Collaborative signaling by mixed chemoreceptor teams in Escherichia coli. Proc. Natl. Acad. Sci. USA 99:7060–7065.

    Article  ADS  Google Scholar 

  • Barkai, N., and S. Leibler. 1997. Robustness in simple biochemical networks. Nature 387:913–917.

    Article  ADS  Google Scholar 

  • Berg, H. C., and E. M. Purcell. 1977. Physics of chemoreception. Biophys. J. 20:193–219.

    Article  ADS  Google Scholar 

  • Berg, H. C., and P. M. Tedesco. 1975. Transient response to chemotactic stimuli in Escherichia coli. Proc. Natl. Acad. Sci. USA 72:3235–3239.

    Article  ADS  Google Scholar 

  • Berg, H. C., and L. Turner. 1995. Cells of Escherichia coli swim either end forward. Proc. Natl. Acad. Sci. USA 92:477–479.

    Article  ADS  Google Scholar 

  • Borkovich, K. A., L. A. Alex, and M. I. Simon. 1992. Attenuation of sensory receptor signaling by covalent modification. Proc. Natl. Acad. Sci. USA 89:6756–6760.

    Article  ADS  Google Scholar 

  • Bornhorst, J. A., and J. J. Falke. 2000. Attractant regulation of the aspartate receptor-kinase complex: limited cooperative interactions between receptors and effects of the receptor modification state. Biochemistry 39:9486–9493.

    Article  Google Scholar 

  • Bray, D. 2002. Bacterial chemotaxis and the question of gain. Proc. Natl. Acad. Sci. USA 99:7–9.

    Google Scholar 

  • Bray, D., R. B. Bourret, and M. I. Simon. 1993. Computer simulation of the phosphorylation cascade controlling bacterial chemotaxis. Mol. Biol. Cell 4:469–482.

    Google Scholar 

  • Cluzel, P., M. Surette, and S. Leibler. 2000. An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 287:1652–1655.

    Article  ADS  Google Scholar 

  • Duke, T. A. J., and D. Bray. 1999. Heightened sensitivity of a lattice of membrane receptors. Proc. Natl. Acad. Sci. USA 96:10104–10108.

    Article  ADS  Google Scholar 

  • Duke, T. A. J., N. Le Novère, and D. Bray. 2001. Conformational spread in a ring of proteins: a stochastic approach to allostery. J. Mol. Biol. 308:541–553.

    Article  Google Scholar 

  • Dunten, P., and D. E. Koshland, Jr. 1991. Tuning the responsiveness of a sensory receptor via covalent modification. J. Biol. Chem. 266: 1491–1496.

    Google Scholar 

  • Falke, J. L. 2002. Cooperactivity between bacterial chemotaxis receptors. Proc. Natl. Acad. Sci. USA 99:6530–6532.

    Article  ADS  Google Scholar 

  • Gestwicki, J. E., and L. L. Kiessling. 2002. Inter-receptor communication through arrays of bacterial chemoreceptors. Nature 415:81–84.

    Article  ADS  Google Scholar 

  • Li, G., and R. M. Weis. 2000. Covalent modification regulates ligand binding to receptor complexes in the chemosensory system of Escherichia coli. Cell 100:357–365.

    Article  Google Scholar 

  • Maddock, J. R., and L. Shapiro. 1993. Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259:1717–1723.

    Article  ADS  Google Scholar 

  • Mesibov, R., G. W. Ordal, and J. Adler. 1973. The range of attractant concentrations for bacterial chemotaxis and the threshold and size of response over this range. J. Gen. Physiol. 62:203–223.

    Article  Google Scholar 

  • Monod, J., J. Wyman, and J.-P. Changeux. 1965. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12:88–118.

    Article  Google Scholar 

  • Segall, J. E., S. M. Block, and H. C. Berg. 1986. Temporal comparisons in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 83:8987–8991.

    Article  ADS  Google Scholar 

  • Shimizu, T. S., N. Le Novère, M. D. Levin, A. J. Beavil, B. J. Sutton, and D. Bray. 2000. Molecular model of a lattice of signalling proteins involved in bacterial chemotaxis. Nature Cell Biol. 2:1–5.

    Article  Google Scholar 

  • Sourjik, V., and H. C. Berg. 2000. Localization of components of the chemotaxis machinery of Escherichia coli using fluorescent protein fusions. Mol. Microbiol. 37:740–751.

    Article  Google Scholar 

  • Sourjik, V., and H. C. Berg. 2002a. Receptor sensitivity in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 99:123–127.

    Article  ADS  Google Scholar 

  • Sourjik, V., and H. C. Berg. 2002b. Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA 99:12669–12674.

    Article  ADS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

(2004). Gain Paradox. In: Berg, H.C. (eds) E. coli in Motion. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21638-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21638-6_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-00888-2

  • Online ISBN: 978-0-387-21638-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics