Skip to main content

Postfire Stimulation of Microbial Decomposition in Black Spruce (Picea mariana L.) Forest Soils: A Hypothesis

  • Chapter
Fire, Climate Change, and Carbon Cycling in the Boreal Forest

Part of the book series: Ecological Studies ((ECOLSTUD,volume 138))

Abstract

Across northern latitudes, the modern boreal forest extends over about 1.2 ×107 km2, an extraordinarily vast area that spans northern Europe, Asia, and North America (Van Cleve et al. 1983a; Nikolov and Helmisaari 1992). Periodic wildfires are common to this forest. Areas burned have large year-to-year variation, depending on climatic conditions; on average, on the order of 105 km2 of boreal forest burns each year (Stocks et al. 1996). Individual fires occasionally burn extensive areas, sometimes covering greater than 1,000,000 ha in a single burn (Cahoon et al. 1994; Murphy et al., this volume).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auclair, A.N.D., and T.B. Carter. 1993. Forest wildfires as a recent source of CO2 at northern latitudes. Can. J. For. Res. 23:1530–1536.

    Article  Google Scholar 

  • Bonan, G.B., and K. Van Cleve. 1992. Soil temperature, nitrogen mineralization, and carbon source-sink relationships in boreal forests. Can. J. For. Res. 22:629–639.

    Article  CAS  Google Scholar 

  • Burke, R.A., R.G. Zepp, M.A. Tarr, W.L. Miller, and B.J. Stocks. 1997. Effect of fire on soil-atmosphere exchange of methane and carbon dioxide in Canadian boreal forest sites. J. Geophys. Res. 102:29,289–29,300.

    Google Scholar 

  • Cahoon, D.R., B.J. Stocks, J.S. Levine, W.R. Cofer III, and J.M. Pierson. 1994. Satellite analysis of the severe 1987 forest fire in northern China and southeastern Siberia. J. Geophys. Res. 99:18,627–18,638.

    Google Scholar 

  • Carslaw, H.S., and J.C. Jager. 1959. Conduction of Heat in Solids. Oxford University Press, London.

    Google Scholar 

  • Dyrness, C.T., and R.A. Norum. 1983. The effects of experimental fires on black spruce forest floors in interior Alaska. Can. J. For. Res. 13:879–893.

    Article  Google Scholar 

  • Dyrness, C.T., L.A. Viereck, and K. Van Cleve. 1986. Fire in taiga communities of interior Alaska, pp. 74–86 in K. Van Cleve, F.S. Chapin III, P.W. Flanagan, L.A. Viereck, and C.T. Dyrness, ed. Forest Ecosystems in the Alaskan Taiga. Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Geiger, R. 1965. The Climate Near the Ground. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Goulden, M.L., S.C. Wofsy, J.W. Harden, S.E. Trumbore, P.M. Crill, S.T. Gower, T. Fries, B.C. Daube, S-M. Fan, D.J. Sutton, A. Bazzaz, and J.W. Munger. 1998. Sensitivity of boreal forest carbon balance to soil thaw. Science 279:214–217.

    Article  PubMed  CAS  Google Scholar 

  • Harden, J.W., E.T. Sundquist, R.F. Stallard, and R.K. Mark. 1992. Dynamics of soil carbon during deglaciation of the Laurentide Ice Sheet. Science 258:1921–1924.

    Article  PubMed  CAS  Google Scholar 

  • Harden, J.W., K.P. O’Neill, S.E. Trumbore, H. Veldhuis, and B.J. Stocks. 1997. Moss and soil contributions to the annual net carbon flux in a maturing boreal forest. J. Geophys. Res. 102:28,805–28,816.

    Google Scholar 

  • Kasischke, E.S., N.L. Christensen, and B.J. Stocks. 1995. Fire, global warming, and the carbon balance of boreal forests. Ecol. Appl. 5:437–451.

    Article  Google Scholar 

  • Nakshabandi, G.A., and H. Kohnke. 1965. Thermal conductivity and diffusivity of soils as related to moisture tension and other physical properties. Agr. Meteorol. 2:271–279.

    Article  Google Scholar 

  • National Climate Data Center. 1998. Alaska climate summaries. Available on the World Wide Web at http://www.wrcc.sage.dri.edu/summary/climsmak.html.

    Google Scholar 

  • Nikolov, N., and H. Helmisaari. 1992. Silvics of the circumpolar boreal forest tree species, pp. 13–84 in H.H. Shugart, R. Leemans, and G.B. Bonan, eds. A Systems Analysis of the Global Boreal Forest. University Press, Cambridge, UK.

    Chapter  Google Scholar 

  • O’Neill, K.P., E.S. Kasischke, D.D. Richter, and V. Krasovic. 1997. Effects of fire on temperature, moisture, and CO2 emissions from Tok, Alaska an initial assessment, pp. 295–303 in I.K. Iskandar, E.A. Wright, J.K. Radke, B.S. Sharratt, P.H. Groenevelt, and L.D. Hinzman, eds. International Symposium on Physics, Chemistry, and Ecology of Seasonally Frozen Soils. June 10–12, 1997, University of Alaska, Fairbanks, Alaska. U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH.

    Google Scholar 

  • Page, A.L., R.H. Miller, and D.R. Keeney, eds. 1982. Methods of Soil Analysis, Part 2: Chemical and Microbiological Properites, 2nd ed. Agronomy 9(2). Soil Science Society of America, Madison, WI.

    Google Scholar 

  • Parkinson, K.J. 1981. An improved method for measuring soil respiration in the field. J. Appl. Ecol. 18:221–228.

    Article  Google Scholar 

  • Schlentner, R.E., and K. Van Cleve. 1985. Relationships between CO2 evolution from soil, substrate temperature, and substrate moisture in four mature forest types in interior Alaska. Can. J. For Res. 15:97–106.

    Article  CAS  Google Scholar 

  • Stocks, B.J., and J.B. Kauffman. 1997. Biomass consumption and behavior of wildland fires in boreal, temperate, and tropical ecosystems: parameters necessary to interpret historic fire regimes and future fire scenarios, pp.169–188 in J.S. Clark, H. Cachier, J.G. Goldammer, and B.J. Stocks, eds. Sediment Records of Biomass Burning and Global Change. NATO ASI Series, Subseries 1, Global Environmental Change, Vol. 51. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Stocks, B.J., B.S. Lee and D.L. Martell. 1996. Some potential carbon budget implications of fire management in the boreal forest, pp. 89–96 in M.J. Apps and D.T. Price, eds. Forest Management and the Global Carbon Cycle. NATO ASI Series, Subseries 1, Global Environmental Change, Vol. 40. Springer-Verlag, Berlin.

    Google Scholar 

  • Trumbore, S.E., and J. Harden. 1997. Accumulation and turnover of carbon in soils of the BOREAS NSA: 1. Methods for determining soil C balance in surface and deep soil. J. Geophys. Res. 102:28,805–28,816.

    Google Scholar 

  • Van Cleve, K., and L. Viereck. 1981. Forest succession in relation to nutrient cycling in the boreal forest of Alaska, pp. 184–211 in D.C. West, H.H. Shugart, and D.B. Botkin, eds. Forest Succession, Concepts and Application. Springer-Verlag New York.

    Google Scholar 

  • Van Cleve, K., C.T. Dyrness, L.A. Viereck, J. Fox, F.S. Chapin, and W. Oechel. 1983a. Taiga ecosystems in interior Alaska. Bioscience 33:39–44.

    Article  Google Scholar 

  • Van Cleve, K., L. Oliver, R. Schlentner, L.A. Viereck, and C.T. Dyrness. 1983b. Productivity and nutrient cycling in taiga forest ecosystems. Can. J. For. Res. 13:747–766.

    Article  Google Scholar 

  • Viereck, L. 1983. The effects of fire in black spruce ecosystems of Alaska and northern Canada, pp. 201–220 in R.W. Wein and D.A. MacLean, eds. The Role of Fire in Northern Circumpolar Ecosystems. John Wiley & Sons, New York.

    Google Scholar 

  • Viereck, L., and C.T. Dyrness. 1979. Ecological effects of the Wickersham Dome fire near Fairbanks, Alaska. General Technical Report PNW-90. USDA Forest Service, Portland, OR.

    Google Scholar 

  • Zepp, R.G., W.L. Miller, M.A. Tarr, and R.A. Burke. 1997. Soil-atmosphere fluxes of carbon monoxide during early stages of postfire succession in upland Canadian boreal forests. J. Geophys. Res. 102:29,301–29,311.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Richter, D.D., O’Neill, K.P., Kasischke, E.S. (2000). Postfire Stimulation of Microbial Decomposition in Black Spruce (Picea mariana L.) Forest Soils: A Hypothesis. In: Kasischke, E.S., Stocks, B.J. (eds) Fire, Climate Change, and Carbon Cycling in the Boreal Forest. Ecological Studies, vol 138. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21629-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21629-4_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-9532-4

  • Online ISBN: 978-0-387-21629-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics