Skip to main content

Controls on Patterns of Biomass Burning in Alaskan Boreal Forests

  • Chapter
Fire, Climate Change, and Carbon Cycling in the Boreal Forest

Part of the book series: Ecological Studies ((ECOLSTUD,volume 138))

Abstract

As discussed in the introduction to this section, fire serves an important ecological role in the boreal forest, especially in those processes controlling the exchange of carbon dioxide and other greenhouse gases with the atmosphere. One of the key requirements for quantifying the effects of fire on the carbon cycle in boreal forests is estimating the amount of biomass consumed during fire.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agriculture Canada Expert Committee on Soil Survey. 1987. The Canadian System of Soil Classification. Canadian Government Publishing Centre, Ottawa, Canada.

    Google Scholar 

  • Alexander, M.E., and D. Quintillo. 1990. Perspectives on experimental fires in Canadian forestry research. Math. Comput. Model. 13:17–26.

    Article  Google Scholar 

  • Alexander, M.E., B.J. Stocks, and B.D. Lawson. 1991. Fire Behavior in Black Spruce— Lichen Woodland: The Porter Lake Project. Northwest Region Information Report NOR-X-310. Canadian Forest Service, Yellowknife, NWT, Canada.

    Google Scholar 

  • Atkins, T.L. 1995. Carbon release from a wildfire in the Alaskan taiga. M.S. thesis, University of Virginia, Charlottesville, VA.

    Google Scholar 

  • Auclair, A.N.D. 1985. Postfire regeneration of plant and soil organic pools in a Picea mariana—Cladonia stellaris ecosystem. Can. J For. Res. 15:279–291.

    Article  Google Scholar 

  • Barney, R.J., K. Van Cleve, and R. Schlentner. 1978. Biomass distribution and crown characteristics in two Alaskan Picea mariana ecosystems. Can J For Res. 8:36–41.

    Article  Google Scholar 

  • Bourgeau-Chavez, L.L., P.A. Harrell, E.S. Kasischke, and N.H.F. French. 1997. The detection and mapping of Alaskan wildfires using a spaceborne imaging radar system. Int. J. Remote Sens. 18:355–373.

    Article  Google Scholar 

  • Buol, S.W., F.D. Hole, and R.J. McCracken. 1989. Soil Genesis and Classification, 3rd ed. Iowa State University Press, Ames, IA.

    Google Scholar 

  • Cahoon, D.R., Jr., B.J. Stocks, J.S. Levine, W.R. Cofer III, and J.M. Pierson. 1994. Satellite analysis of the severe 1987 forest fires in northern China and southeastern Siberia. J. Geophys. Res. 99:18,627–18,638.

    Google Scholar 

  • Dyrness, C.T., and R.A. Norum. 1983. The effects of experimental fires on black spruce forest floors in interior Alaska. Can J. For Res. 13:879–893.

    Article  Google Scholar 

  • French, N.H.F., E.S. Kasischke, L.L. Bourgeau-Chavez, P.A. Harrell, and N.L. Christensen, Jr. 1996. Monitoring variations in soil moisture on fire disturbed sites in Alaska using ERS-1 SAR imagery. Int. J. Remote Sens. 17:3037–3053.

    Article  Google Scholar 

  • Harden, J.W., K.P. O’Neill, S.E. Trumbore, H. Veldhuis, and B.J. Stocks. 1997. Moss and soil contributions to the annual net carbon flux of a maturing boreal forest. J. Geophys. Res. 102:28,805–28,816.

    Google Scholar 

  • Harrell, P.A., L.L. Bourgeau-Chavez, E.S. Kasischke, N.H.F. French, and N.L. Christensen. 1995. Sensitivity of ERS-1 and JERS-1 radar data to biomass and stand structure in Alaskan boreal forest. Remote Sens. Environ. 54:247–260.

    Article  Google Scholar 

  • Kasischke, E.S., and N.H.F. French. 1997. Natural limits on using AVHRR imagery to map patterns of vegetation cover in boreal forest regions. Int. J. Remote Sens. 18:2403–2426.

    Article  Google Scholar 

  • Kasischke, E.S., N.H.F. French, L.L. Bourgeau-Chavez, and N.L. Christensen, Jr. 1995. Estimating release of carbon from 1990 and 1991 forest fires in Alaska. J. Geophys. Res. 100:2941–2951.

    Article  CAS  Google Scholar 

  • Mann, D.H., C.L. Fastie, E.L. Rowland, and N.H. Bigelow. 1995. Spruce succession, disturbance, and geomorphology on the Tanana River floodplain, Alaska. Ecoscience 2:184–195.

    Google Scholar 

  • Peterson, E.B., Y.H. Chan, and J.B. Cragg. 1970. Aboveground standing crop and caloric value in an aspen clone near Calgary, Alberta. Can. J. Bot. 48:1459–1469.

    Article  Google Scholar 

  • Quintillo, D., M.E. Alexander, and R.L. Ponto. 1991. Spring fires in a semimature trembling aspen stand in central Alberta. Northwest Region Information Report NOR-X-323. Canadian Forest Service, Yellowknife, NWT, Canada.

    Google Scholar 

  • Stocks, B.J. 1980. Black spruce crown fuel weights in northern Ontario. Can J. For. Res. 10:498–501.

    Article  Google Scholar 

  • Stocks, B.J. 1987. Fire behavior in immature jack pine. Can J. For. Res. 17:80–86.

    Article  Google Scholar 

  • Stocks, B.J. 1989. Fire behavior in mature jack pine. Can J. For Res. 19:783–790.

    Article  Google Scholar 

  • Stocks, B.J. 1991. The extent and impact of forest fires in northern circumpolar countries, pp. 197–202 in J.S. Levine, ed. Global Biomass Burning: Atmospheric, Climatic and Biospheric Implications. MIT Press, Cambridge, MA.

    Google Scholar 

  • Stocks, B.J., and J.B. Kauffman. 1997. Biomass consumption and behavior of wildland fires in boreal, temperate, and tropical ecosystems: parameters necessary to interpret historic fire regimes and future fire scenarios, pp. 169–188 in J.S. Clark, H. Cachier, J.G. Goldammer, and B.J. Stocks, eds. Sediment Records of Biomass Burning and Global Change. NATO ASI Series, Subseries 1, Global Environmental Change, Vol. 51, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Stocks, B.J., B.D. Lawson, M.E. Alexander, C.E. Van Wagner, R.S. McAlpine, T.J. Lynham, and D.E. Dube. 1989. The Canadian forest fire danger rating system: an overview. For. Chron. 65:258–265.

    Google Scholar 

  • Susott, R.A., D.E. Ward, R.E. Babbitt, and D.J. Latham. 1991. The measurement of trace gas emissions and combustion characteristics for a mass fire, pp. 245–257 in J.S. Levine, ed. Global Biomass Burning: Atmospheric, Climatic and Biospheric Implications. MIT Press, Cambridge, MA.

    Google Scholar 

  • Telfer, E.S. 1969. Weight-diameter relationships for 22 woody plant species. Can J. Bot. 47:1851–1855.

    Article  Google Scholar 

  • Van Cleve, K., L. Oliver, R. Schlentner, L.A. Viereck, and C.T. Dyrness. 1983. Productivity and nutrient cycling in taiga forest ecosystems. Can J. For. Res. 13:747–766.

    Article  Google Scholar 

  • Yarie, J., and K. Van Cleve. 1983. Biomass and productivity of white spruce stands in interior Alaska. Can J. For. Res. 13:767–772.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Kasischke, E.S., O’Neill, K.P., French, N.H.F., Bourgeau-Chavez, L.L. (2000). Controls on Patterns of Biomass Burning in Alaskan Boreal Forests. In: Kasischke, E.S., Stocks, B.J. (eds) Fire, Climate Change, and Carbon Cycling in the Boreal Forest. Ecological Studies, vol 138. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21629-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21629-4_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-9532-4

  • Online ISBN: 978-0-387-21629-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics