Skip to main content

Complexity, Vision, and Attention

  • Chapter
Vision and Attention

Abstract

What does it mean for a problem to be complex? One dimension of complexity is computational complexity. This chapter focuses on how this type of complexity affects the design of perceptual systems. Many natural problems have optimal solutions that are believed to be computationally intractable in any implementation, machine or neural. Thus, the computational complexity of a particular solution greatly affects its realizability, and thus its plausibility. The focus here will be on problems in vision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bahcall, D., and Kowler, E., (1999). Attentional Interference at Small Spatial Separations. Vis. Res. 39: 71–86.

    Article  PubMed  CAS  Google Scholar 

  2. Brefczynski, J. A., and DeYoe, E. A., (1999). A physiological correlate of the `spotlight’ of visual attention. Nat. Neurosci. 2: 370–4

    Article  PubMed  CAS  Google Scholar 

  3. Caputo, G., and Guerra, S., (1998). Attentional Selection by Distractor Suppression. Vis. Res. 38: 669–689.

    Article  PubMed  CAS  Google Scholar 

  4. Chelazzi, L., Miller, E., Duncan, J., and Desimone, R., (1993). A neural basis for visual search in inferior temporal cortex. Nature, 363: 345–347.

    Article  PubMed  CAS  Google Scholar 

  5. Cook, S. (1971). The complexity of theorem-proving procedures. Proceedings of the 3rd Annual ACM Symposium on the Theory of Computing, p. 151–158, New York, NY: ACM Press.

    Google Scholar 

  6. Cooper, M., (1992). Visual Occlusion and the Interpretation of Ambiguous Pictures. Chicester, England: Ellis Horwood.

    Google Scholar 

  7. Davis, M. (1958). Computability and Unsolvability. New York, NY: McGraw-Hill.

    Google Scholar 

  8. Davis, M., (1965). The Undecidable. New York, NY: Hewlett Raven Press.

    Google Scholar 

  9. Dendris, N. D., Kalafatis, I. A., and Kirousis, L. M., (1994). An efficient parallel algorithm for geometrically characterising drawings of a class of 3-D objects. J. Math. Imaging Vis., 4: 375–387.

    Article  Google Scholar 

  10. Desimone, R., (1990). Complexity at the Neuronal Level. Behay. Brain Sci., 13: 446.

    Article  Google Scholar 

  11. Desimone, R., and Duncan, J., (1995). Neural Mechanisms of Selective Attention. Ann. Rev. Neurosci., 18: 193–222.

    Article  PubMed  CAS  Google Scholar 

  12. Dowling, J. (1987). The Retina: An Approachable Part of the Brain. Cambridge, MA: Harvard University Press.

    Google Scholar 

  13. Gandhi, S. P., Heeger, D. J., and Boynton, G. M., (1999). Spatial attention affects brain activity in human primary visual cortex. Proc. Natl. Acad. Sci. USA, 96: 3314–3319.

    Article  PubMed  CAS  Google Scholar 

  14. Garey, M., and Johnson, D. (1979). Computers and Intractability: A Guide to the Theory of NP-completeness. San Francisco: Freeman.

    Google Scholar 

  15. von Helmholtz, H., (1963) in J.P.C.S. Southall (Ed.), Handbook of Physiological Optics. New York, NY: Dover, (originally published 1867 ).

    Google Scholar 

  16. Joseph, J., Chun, M., and Nakayama, K., (1997). Attentional Requirements in a `Preattentive’ Feature Search Task, Nature 387: 805–807.

    Article  PubMed  CAS  Google Scholar 

  17. Judd, J. S., (1990). Neural Network Design and the Complexity of Learning. Cambridge, MA: MIT Press.

    Google Scholar 

  18. Kasif, S., (1990). On the parallel complexity of discrete relaxation in constraint satisfaction networks. Artif. Intell., 45: 275–286.

    Article  Google Scholar 

  19. Kastner, S., De Weerd, P., Desimone, R., and Ungerleider, L., (1998). Mechanisms of Directed Attention in the Human Extrastriate Cortex as Revealed by Functional MRI. Science 282: 108–111.

    Article  PubMed  CAS  Google Scholar 

  20. Kirousis, L. M. (1990) Effectively labeling planar projections of polyhedra, IEEE Trans. Pattern Anal. Mach. Intell. 12: 123–130.

    Article  Google Scholar 

  21. Kirousis, L. M. (1993). Fast parallel constraint satisfaction. Artif, Intell., 64: 147160.

    Google Scholar 

  22. Kirousis, L.M., and Papadimitriou, C. (1988). The complexity of recognizing polyhedral scenes. J. Comp. Sys. Sci., 37: 14–38.

    Article  Google Scholar 

  23. Man, D. (1982). Vision: A Computational Investigation Into the Human Representation and Processing of Visual Information. San Francisco, CA: Freeman.

    Google Scholar 

  24. Maunsell, J., (1995). The brain’s visual world: Representation of visual targets in cerebral cortex. Science, 270: 764–769.

    Article  PubMed  CAS  Google Scholar 

  25. Moran, J., Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science, 229: 782–784.

    Article  PubMed  CAS  Google Scholar 

  26. Motter, B., (1993). Focal attention produces spatially selective processing in visual cortical areas V1, V2 and V4 in the presence of competing stimuli. J. Neurophysiol. 70: 909–919.

    PubMed  CAS  Google Scholar 

  27. Motter, B., (1994a). Neural correlates of attentive selection of color or luminance in extrastriate area V4. J. Neurosci., 14: 2178–2189.

    PubMed  CAS  Google Scholar 

  28. Motter, B., (1994b). Neural correlates of feature selective memory and pop-out in extrastriate area V4. J. Neurosci., 14: 2190–2199.

    PubMed  CAS  Google Scholar 

  29. Parodi, P., Lanciwicki, R., Vijh, A., and Tsotsos, J. K. (1998). Emperically-derived estimates of the complexity of labeling line drawings of polyhedral scenes. Artif. Intel., 105: 47–75.

    Article  Google Scholar 

  30. Rabbitt, P. (1978). Sorting, categorization and visual search. In E. Carterette, and M. Freidman (Eds.), Handbook of Perception: Perceptual Processing, (Vol. IX), pp. 85–136. New York, NY: Academic Press.

    Google Scholar 

  31. Reynolds, J., Chelazzi, L., and Desimone, R., (1999). Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4, J. Neurosci., 19: 1736 1753

    Google Scholar 

  32. Schall, J., and Hanes, D. (1993). Neural basis of saccade target selection in frontal eye field during visual search. Nature 366: 467–469.

    Article  PubMed  CAS  Google Scholar 

  33. John K. Tsotsos

    Google Scholar 

  34. Stockmeyer, L., and Chandra, A. (1979). Intrinsically difficult problems. Scientific American Trends in Computing, (Vol. 1), pp. 88–97. New York, NY: Scientific American Inc.

    Google Scholar 

  35. Treisman, A. (1988). Features and objects. The fourtennth Bartlett memorial lecture. Q. J. Exp. Psych., 4aA-2: 201–237.

    Google Scholar 

  36. Tsotsos, J. K. (1989). The Complexity of Perceptual Search Tasks. Proc. Eleventh International Joint Conference on Artificial Intelligence, Detroit, Michigan, pp. 1571–1577.

    Google Scholar 

  37. Tsotsos, J. K. (1990). A Complexity Level Analysis of Vision. Behay. and Brain Sci., 13: 423–455.

    Article  Google Scholar 

  38. Tsotsos, J. K. (1992). On the relative complexity of active vs passive visual search. Int. J. Comp. Vis., 7: 127–141.

    Article  Google Scholar 

  39. Tsotsos, J. K. (1995). Behaviorist intelligence and the scaling problem. Artif. Intell., 75: 135–160.

    Article  Google Scholar 

  40. Tsotsos, J. K., Culhane, S., Wai, W., Lai, Y., Davis, N., and Nuflo, F. (1995). Modeling visual attention via selective tuning. Artif. Intell., 78: 507–545.

    Article  Google Scholar 

  41. Turing, A. (1937). On computable numbers with an application to the Entschei- dungs problem. Proc. London Mathematical Society, Vol. 22, 230–265.

    Google Scholar 

  42. Yashuhara, A., (1971). Recursive Function Theory and Logic, New York, NY: Academic Press.

    Google Scholar 

  43. Ye, Y., and Tsotsos, J. K., (1996) Sensor planning in 3D object search: its formulation and complexity. Proc. Int. Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale.

    Google Scholar 

  44. Vanduffel, W., Tootell, R., and Orban, G. (2000). “Attention-dependent suppression of metabolic activity in the early stages of the macaque visual system. Cerebral Cortex, 10: 109–126.

    Google Scholar 

  45. Van Essen, D., Anderson, C., and Felleman, D. (1992). Information processing in the primate visual system: An integrated systems perspective. Science, 255: 419–422.

    Article  PubMed  Google Scholar 

  46. Yeshurun, Y., and Carrasco, M., (1999). Spatial attention improves performance in spatial resolution tasks. Vis. Res., 39: 293–306

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tsotsos, J.K. (2001). Complexity, Vision, and Attention. In: Jenkin, M., Harris, L. (eds) Vision and Attention. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21591-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21591-4_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-9520-1

  • Online ISBN: 978-0-387-21591-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics