Skip to main content

Ultra-Long-Haul, Dense WDM Using Dispersion-Managed Solitons in an All-Raman System

  • Chapter
Raman Amplifiers for Telecommunications 2

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 90/2))

Abstract

In the late 1990s, the telecommunications industry began to see dense WDM as the way to provide for the seemingly explosive growth in demand for transmission capacity. The usual industry practice of using electronic regeneration at every node point (typically, once every 400 to 600 km; see Fig. 18.1), however, promised to use far too much capital equipment and office space, especially if the net transmission rates were to be at terabit levels. For example, a system carrying one terabit/s in each direction, at the practical and increasingly popular per-channel rate of 10 Gbit/s, would require no less than 200 (expensive and bulky) regenerators, or OT units per node (one for each direction and channel). In the meantime, it was already well known, principally from undersea practice, that such dense WDM could be successfully carried out, without regeneration, over transoceanic distances, at least under the special conditions of the undersea environment. Thus the idea of developing an all-optical terrestrial system (which had in fact been advanced many years ago [1-3]) began to take root and to undergo engineering development by many firms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Hasegawa, Numerical Study of optical soliton transmission amplified periodically by the stimulated Raman process, Appl. Optics, 23: Oct., 3302–3305, 1984.

    Google Scholar 

  2. L. F. Mollenauer, J. P. Gordon, and M. N. Islam, Soliton propagation in long fibers with periodically compensated loss, IEEE J. Quantum Electron., QE-22, Jan., 157–173, 1986.

    Google Scholar 

  3. L. F. Mollenauer and K. Smith, Demonstration of soliton transmission over more than 4000 km in fiber with loss periodically compensated by Raman gain, Optics Lett., 13, Aug. 675–677, 1988.

    Google Scholar 

  4. L. F. Mollenauer, J. P. Gordon, and P. V. Mamyshev, Solitons in high bit-rate, long-distance transmission. In Optical Fiber Telecommunications IIIA, I. P. Kaminow and T. L. Koch, eds., Vol. IIIA, Chap. 12, San Diego: Academic, 373–460, 1997.

    Chapter  Google Scholar 

  5. P. V. Mamyshev and N. A. Mamysheva, Pulse-overlapped dispersion-managed data transmission and intrachannel four-wave mixing, Optics Lett., 24, Nov., 1454–1456, 1999.

    Google Scholar 

  6. M. Matsumoto and H. A. Haus, Stretched-pulse optical fiber communications, Optics Lett., 9, June, 785–787, 1997.

    Google Scholar 

  7. T. Yu, E. A. Golovchenko, and A. N. Pilipetskii and C. R. Menyuk, Dispersion-managed soliton interactions in optical fibers, Optics Lett., 22, June, 793–795, 1997.

    Google Scholar 

  8. A.R. Chraplyvy, A.H. Gnauck, T. W. Tkach, and R. M. Derosier, 8 x 10 Gb/s transmission through 280 km of dispersion-managed fiber, IEEE Photon. Technol. Lett., 5, Oct., 1233–1235, 1993.

    Google Scholar 

  9. A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, and R. M. Derosier, One-third terabit/s transmission through 150 km of dispersion-managed fiber, IEEE Photon. Technol. Lett., 7, Jan., 98–100, 1995.

    Google Scholar 

  10. M. Suzuki, I. Morita, N. Edagawa, S. Yamamoto, H. Taga, S. Akiba, Reduction of Gordon-Haus timing jitter by periodic dispersion compensation in soliton transmission, Electron. Lett., 31:2027–2028, 1995.

    Article  Google Scholar 

  11. N. S. Bergano and C. R. Davidson, Wavelength division multiplexing in long-haul transmission systems, J. Lightwave Technol., 14, June, 1299–1308, 1996.

    Google Scholar 

  12. D. Anderson, Variational approach to nonlinear pulse propagation in optical fibers, Phys. Rev. A, 27:3135, 1983.

    Google Scholar 

  13. S. K. Turitsyn and E. G Shapiro, Variational approach to the design of optical communication systems with dispersion management, Opt. Fiber Technol., 4:151–188, 1998.

    Article  ADS  Google Scholar 

  14. J. N. Kutz, P. Holmes, S. G. Evangelides, and J. P. Gordon, Hamiltonian dynamics of dispersion-managed breathers, J. Opt. Soc. Am. B, 15, Jan., 87, 1998.

    Google Scholar 

  15. J. P. Gordon and L. F. Mollenauer, Scheme for the characterization of dispersion-managed solitons, Optics Lett., 24, Feb., 323–325, 1999.

    Google Scholar 

  16. L. F. Mollenauer, P. V. Mamyshev, and J. P. Gordon, Effect of guiding filters on the behavior of dispersion-managed solitons, Optics Lett., 24, Feb., 220–222, 1999.

    Google Scholar 

  17. N. J. Smith, F M. Knox, N. J. Doran, K. J. Blow, and I. Bernnion, Enhanced power solitons in optical fibres with periodic dispersion mangement, Electron. Lett., 32, Jan., 54–55, 1996.

    Google Scholar 

  18. N. J. Smith, N. J. Doran, F M. Knox, and W. Forysiak, Energy-scaling characteristics of solitons in strongly dispersion-managed fibers, Optics Lett., 21, Dec., 1981-1983, 1996.

    Google Scholar 

  19. V. S. Grigoryan, T. Yu, E. A. Golovchenko, C. R. Menyuk, and A. N. Pilipetskii, Dispersion-managed soliton dynamics, Optics Lett., 22, Nov., 1609–1611, 1997.

    Google Scholar 

  20. T.-S. Yang and W. L. Kath, Analysis of enhanced-power solitons in dispersion-managed optical fibers, Optics Lett., 22, July, 985–987, 1997.

    Google Scholar 

  21. J. R Gordon and L. F Mollenauer, Effects of fiber nonlinearities and amplifier spacing on ultra-long distance transmission, J. Lightwave Technol., 9, Feb., 170–173, 1991.

    Google Scholar 

  22. L. F. Mollenauer, R. Bonney, J. P. Gordon, and P. V. Mamyshev, Dispersion-managed solitons for terrestrial transmission, Optics Lett., 24, March, 285–287, 1999.

    Google Scholar 

  23. J. P. Gordon and H. A. Haus, Random walk of coherently amplified solitons in optical fiber transmission, Optics Lett., 11, Oct., 665–667, 1986.

    Google Scholar 

  24. P. V. Mamyshev and L. F Mollenauer, Soliton collisions in wavelength-division-multiplexed dispersion-managed systems, Optics Lett., 24, April, 448–450, 1999.

    Google Scholar 

  25. L. F. Mollenauer, J. P. Gordon, and F. Heismann, Polarization scattering by soliton-soliton collisions, Optics Lett., 20, 2060–2062, 1995.

    Article  ADS  Google Scholar 

  26. C. Xu, and C. Xie, and L. F. Mollenauer, Analysis of soliton collisions in a wavelength-division-multiplexed dispersion-managed soliton transmission system, Optics Lett., 27, Aug., 1303–1305, 2002.

    Google Scholar 

  27. L. F. Mollenauer and C. Xu, Time-lens timing-jitter compensator in ultra-long haul DWDM dispersion-managed soliton transmission. In Proceedings of the Conference on Lasers and Electro-Optics, post deadline papers, CPDB1-1, Optical Society of America, May 19–24, 2002.

    Google Scholar 

  28. L. F. Mollenauer, C. Xu, C. Xie. and I. Kang, The temporal lens as jitter-killer, In Technical Digest of the Nonlinear Optics Conference, Optical Society of America, July 29-Aug 2, 66–68, 2002.

    Google Scholar 

  29. L. A. Jiang, M. E. Grein, B. S. Robinson, E. P. Ippen, and H. A. Haus, Experimental demonstration of a timing jitter eater. In Technical Digest of the Conference on Lasers and Electro-Optics, Optical Society of America, May 19–24, CTuF7, 2002.

    Google Scholar 

  30. M. Romagnoli, P. Franco, R. Corsini, A. Schiffini, and M. Midrio, Time-domain Fourier optics for polarization-mode dispersion compensation, Optics Lett., 24, Sept., 1197–1199, 1999.

    Google Scholar 

  31. L. F Mollenauer, P. V. Mamyshev, J. Gripp, M. J. Neubelt, and N. Mamysheva, Demonstration of massive wavelength-division multiplexing over transoceanic distances by use of dispersion-managed solitons, Optics Lett., 25, May, 704–706, 2000.

    Google Scholar 

  32. M. Shirasaki, Chromatic-dispersion compensator using virtually imaged phased array, IEEE Photon. Technol. Lett., 9:1598–1600, 1997.

    Article  ADS  Google Scholar 

  33. C. R. Doerr, L. W. Stulz, S. Chandrasekhar, and L. Buhl, Multichannel integrated tunable dispersion compensator employing a thermooptic lens. In Technical Digest of the Optical Fiber Communication Conference OFC 2002, Optical Society of America and IEEE, March 17–22, PD FA6-2, 2002.

    Google Scholar 

  34. C. K. Madsen and G. Lenz, Optical all-pass filters for phase response design with applications for dispersion compensation, IEEE Photon. Technol. Lett., 10:994–996, 1998.

    Article  ADS  Google Scholar 

  35. D. J. Moss, S. McLaughlin, G. Randall, M. Lamont, M. Ardekani, P. Colbourne, S. Kiran, and C. A. Hulse, Multichannel tunable dispersion compensation using all-pass multicavity etalons, In Technical Digest of the Optical Fiber Communication Conference OFC 2002, Optical Society of America and IEEE, March 17–22, 132–133, 2002.

    Google Scholar 

  36. X. Wei, X. Liu, C. Xie, and L. F Mollenauer, Reduction of collision-induced timing jitter in dense WDM by the use of periodic group delay dispersion compensators, Optics Lett., 28:xxx, 2003.

    Google Scholar 

  37. L. F. Mollenauer, S. G. Evangelides, and J. P. Gordon, Wavelength division multiplexing with solitons in ultra-long distance transmission using lumped amplifiers, J. Lightwave Technol., 9, March, 362–367, 1991.

    Google Scholar 

  38. J. P. Gordon and L. F. Mollenauer, Phase noise in photonic communications systems using linear amplifiers, Optics Lett., 15, Dec., 1351–1353, 1990.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Mollenauer, L.F. (2004). Ultra-Long-Haul, Dense WDM Using Dispersion-Managed Solitons in an All-Raman System. In: Islam, M.N. (eds) Raman Amplifiers for Telecommunications 2. Springer Series in Optical Sciences, vol 90/2. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21585-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21585-3_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-40656-5

  • Online ISBN: 978-0-387-21585-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics