Skip to main content

Ultra-Long-Haul Submarine and Terrestrial Applications

  • Chapter

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 90/2))

Abstract

Optical communication is the science of transmitting information over a distance using light. The engineering difficulties vary greatly because the distances to be traversed differ significantly. For some, the task may be the need to interconnect electronic integrated circuits within a computer. For others, the distance to be covered may be between computers in a building or between the buildings in a city. The differences between these cases are the distances over which information must be carried. These differences dictate the nature of the technologies required to implement the connections.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. E. Wagner, L. Nederlof, and S. De Maesschalck, The potential of optical layer networks, Technical Digest of Optical Fiber Communications 2001, TuT3-1, 2001.

    Google Scholar 

  2. [2] Lucent’s new all-optical router uses Bell Labs microscopic mirrors, Lucent Press Release, November 10, 1999. http://www.bell-labs.com/news/1999/november/10/1.html.

  3. B. Dibner, The Atlantic Cable, Norwalk, CT: Burndy Library, Inc., 1959.

    Google Scholar 

  4. J. Brooks, Telephone: The First Hundred Years, New York: Harper & Row, 90, 1975.

    Google Scholar 

  5. E. H. Ehrbar, Undersea cables for telephony. In Undersea Lightwave Communications, ed. P. K. Runge and P. Trischitta, New York: IEEE Press, 1986.

    Google Scholar 

  6. A. Clarke, Voice Across The Sea, New York: Harper & Row, 1959.

    Google Scholar 

  7. J. Hecht, City of Light: The Story of Fiber Optics, New York: Oxford University Press, 1999.

    Google Scholar 

  8. L. F. Mollenauer, R. H. Stolen, and M. N. Islam, Experimental demonstration of soliton propagation in long fibers: Loss compensated by Raman gain, Optics Lett., 10:5, (May), 229–231, 1985.

    Google Scholar 

  9. L. F. Mollenauer, R. H. Stolen, and M. N. Islam, Demonstration of soliton transmission over more than 4000 km in fiber with loss periodically compensated by Raman gain, Optics Lett., 13:8, (August), 1988.

    Google Scholar 

  10. R. H. Stolen and E. P. Ippen, Raman gain in glass optical waveguides, Appl. Phys. Lett., 22:6, (March), 276–278, 1973.

    Google Scholar 

  11. S. G. Grubb, T. Strasser, W. Y, Cheung, W. A. Reed, V. Mizrahi, T. Erdogan, P. J. Lemaire, A. M. Vengsarkar and D. J. DiGiovanni, High power 1.48 μm cascaded Raman laser in germanosilicate fibers. In Proceedings of Optical Amplifiers and Their Applications, Davos, Switzerland, (June), 197–199, 1995.

    Google Scholar 

  12. M. Nissov, C. R. Davidson, K. Rottwitt, R. Menges, P. C. Corbett, D. Innis, and N. S. Bergano, 100 Gb/s (10x10Gb/s) WDM transmission over 7200 km using distributed Raman amplification. In Proceedings of ECOC’97, 1997.

    Google Scholar 

  13. P. Lancaster, P. Mejasson, A. Cordier, C. Little, T. Shirley, P. Dupire, and T. Farrar, Efficient powering of long haul and high capacity submarine networks. In Proceedings of SubOptic 2001 International Convention, Kyoto, Japan, May 20–24, T4.5.2, 2001.

    Google Scholar 

  14. Suzuki, H. Kidorf, et al., 170 Gb/s transmission over 10,850 km using large core transmission fiber. In Postdeadline Papers of OFC, 1998.

    Google Scholar 

  15. F. Corti, B. Daino, G. de Marchis, and F. Matera, Statistical treatment of the evolution of the principal states of polarization in single-mode fiber, J. Lightwave Technol., 8:8, (August), 1162–1166, 1990.

    Google Scholar 

  16. C. D. Poole and J. Nagel, Polarization effects in lightwave systems. In Optical Fiber Telecommunications IIIA, ed. I. Kaminow and T. Koch, 153, San Diego: Academic Press, 1997.

    Google Scholar 

  17. E. A. Golovchenko, A. N. Pilipetskii, N. S. Bergano, C.R Davidson, F. I. Khatri, R. M. Kimball, and V. J. Mazurczyk, Modeling of transoceanic fiber-optic WDM communication systems, IEEE J. Select. Topics Quantum Electron., 6:2, (March/April), 337–347, 2000.

    Google Scholar 

  18. K. S. Kim, W. A. Reed, R. H. Stolen, and K. W. Quoi, Measurement of the non-linear index of silica core and dispersion shifted fibers, IEE Electron. Lett., 32:570.

    Google Scholar 

  19. F. Forghieri, R. W. Tkach, and A. R. Chraplyvy, Fiber nonlinearities and their impact on transmission systems. In Optical Fiber Telecommunications IIIA, ed. I. Kaminow and T. Koch, San Diego: Academic Press, 1997.

    Google Scholar 

  20. G. P. Agrawal, Non-Linear Fiber Optics, 2d ed., San Diego: Academic, 1995.

    Google Scholar 

  21. F. Forghieri, R. W. Tkach, and A. R. Chraplyvy, Fiber nonlinearities and their impact on transmission systems. In Optical Fiber Telecommunications IIIA, ed. I. Kaminow and T. Koch, San Diego: Academic Press, 1997.

    Google Scholar 

  22. J. L. Gimlett and N. K. Cheung, Effects of phase-to-intensity noise conversion by multiple reflections on gigabit-per-second DFB laser transmission systems, J. Lightwave Technol., 7:6, (June), 888–895, 1989.

    Google Scholar 

  23. A. F. Judy, The generation of intensity noise from fiber Rayleigh backscatter and discrete reflections. In Proceedings of the European Conference on Optical Communications, TuP11, 1989.

    Google Scholar 

  24. J. M. Senior, Optical Fiber Communications, Englewood Cliffs, NJ: Prentice-Hall, 69, 1985.

    Google Scholar 

  25. J. L. Gimlett, M. Z. Iqbal, N. K. Cheung, A. Righetti, F. Fontana, and G. Grasso, Observations of equivalent Rayleigh scattering mirrors in lightwave systems with optical amplifiers, IEEE Photon. Technol. Lett., 2:3, (March), 211–213, 1990.

    Google Scholar 

  26. M. Nissov, Long-haul optical transmission using distributed Raman amplification, PhD thesis, Department of Electromagnetic Systems, Technical University of Denmark, December 1997.

    Google Scholar 

  27. B. Pedersen, A. Bjarklev, J. H. Povlsen, K. Dybdal, and C. C. Larsen, The design of erbium doped fiber amplifiers, J. Lightwave Technol., 9:9, (Sept.), 1105–1112, 1991.

    Google Scholar 

  28. R. Stolen, Stimulated Raman scattering (SRS). In Optical Fiber Telecommunications, ed. S. E. Miller and A. G. Chynoweth, Chapter 5.2, 127–133, New York: Academic, 1979.

    Google Scholar 

  29. G P. Agrawal, Non Linear Fiber Optics, 2d ed. Chapter 8, San Diego: Academic, 1995.

    Google Scholar 

  30. R. G. Smith, Optical power handling capability of low loss optical fibers as determined by stimulated Raman and Brillouin scattering, Appl. Optics, 11:11, 2489–2494, 1972.

    Article  ADS  Google Scholar 

  31. M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers, IEE Electron. Lett., 35:12, (June), 997–998, 1999.

    Google Scholar 

  32. H. Takahashi et al., Impact of crosstalk in an arrayed waveguide multiplexer on n x n optical interconnection, J. Lightwave Technol., 14:6, (June), 1097–1105, 1996.

    Google Scholar 

  33. N. Tsukiji et al., Advantage of inner-grating-multimode laser (iGM laser). In Proceedings of OMB4, Optical Amplifiers and Their Applications, Vancouver Canada, July 14–19, 2002.

    Google Scholar 

  34. L. L. Wang et al., Linewidth limitations of low noise wavelength stabilized Raman pumps. In Proceedings of OMB5, Optical Amplifiers and Their Applications, Vancouver Canada, July 14–19, 2002.

    Google Scholar 

  35. A. Evans, Raman amplification in broadband WDM systems. In Technical Digest of OFC’01, Anaheim, CA, TuF4: 2001.

    Google Scholar 

  36. M. N. Islam, Raman amplifiers for telecommunications, IEEE J. Select. Topics Quantum Electron., 8:3, 548–559, 2002.

    Article  Google Scholar 

  37. M. X. Ma, H. D. Kidorf, K. Rottwitt, F. W. Kerfoot, and C. R. Davidson, 240-km repeater spacing in a 5280-km WDM system experiment using 8 2.5 Gb/s NRZ transmission, IEEE Photon. Technol. Lett., 10:6, (June), 1998.

    Google Scholar 

  38. C. B. Clausen, S. Ten, B. Cavrak, C. R. Davidson, A. N. Pilipetskii, M. Nissov, E. A. Golovchenko, R. Ragbir, and K. Adams, Modeling and experiments of Raman assisted ultra long-haul terrestrial transmission over 7500 km, Technical Digest of ECOC’01, Amsterdam, The Netherlands, 315–1, 2001.

    Google Scholar 

  39. F. Liu, J. Bennike, S. Dey, C. Rasmussen, B. Mikkelsen, and P. Mamyshev, 1.6 Tbit/s (40 x 42.7 Gb/s) transmission over 3600 km UltraWave™ fiber with all-Raman amplified 100 km terrestrial spans using ETDM transmitter and receiver. In Postdeadline Papers of OFC’02, Anaheim, CA, FC7, 2002.

    Google Scholar 

  40. D.F. Grosz, A. Küng, D. N. Maywar, L. Altman, M. Movassaghi, H. C. Lin, D. A. Fishman, and T. H. Wood, Demonstration of all-Raman ultra-wide-band transmission of 1.28 Tb/s (128 x 10 Gb/s) over 4000 km of NZ-DSF with large BER margins. Postdeadline Papers of ECOC’01, Amsterdam, The Netherlands, 72–73, 2001.

    Google Scholar 

  41. K. Shimizu, K. Ishida, K. Kinjo, T. Kobayashi, S. Kajiya, T. Tokura, T. Kogure, K. Motoshima, and T. Mizuochi, 65 x 22.8 Gb/s WDM transmission over 8,398 km employing symmetrically collided transmission with Aeff managed fiber. In Technical Digest of OFC’02, Anaheim, CA, WX4, 2002.

    Google Scholar 

  42. T. Tanaka, N. Shimojoh, T. Naito, H. Nakamoto, I. Yokota, T. Ueki, A. Suguyama, and M. Suyama, 2.1-Tbit/s WDM transmission over 7,221 km with 80-km repeater spacing. Postdeadline Papers of ECOC’00, Munich, PD1.8, 2000.

    Google Scholar 

  43. H. Masuda, S. Kawai, K.-I. Suzuki, and K. Aida, 75-nm 3-dB gain-band optical amplification with erbium-doped fluoride fibre amplifiers and distributed Raman amplifiers in 9 x 2.5 Gb/s WDM transmission experiment. In Proceedings of the European Conference on Optical Communication (ECOC’97), 73–75, 1997.

    Google Scholar 

  44. D. G Foursa, C. R. Davidson, M. Nissov, M. A. Mills, L. Xu, J. X. Cai, A. N. Pilipetskii, Y. Cai, C. Breverman, R. R. Cordell, T. J. Carvelli, P. C. Corbett, H. D. Kidorf, and N. S. Bergano, 2.56 Tb/s (256 x 10 Gb/s) transmission over 11,000 km using hybrid Raman/EDFAs with 80 nm of continuous bandwidth. In Postdeadline Papers of OFC’02, Anaheim, CA, FC8, 2002.

    Google Scholar 

  45. N. Shimojoh, T. Naito, T. Tanaka, H. Nakamoto, T. Ueki, A. Sugiyama, K. Torii, and M. Suyama, 2.4-Tbit/s WDM transmission over 7400 km using all Raman amplifier repeaters with 74-nm continuous single band. In Postdeadline Papers of ECOC’01, Amsterdam, The Netherlands, 8–9, 2001.

    Google Scholar 

  46. AH. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, C. Doerr, L. Stulz, A. Agarwal, S. Banerjee, D. Grosz, S. Hunsche, A. Kung, A. Marhelyuk, D. Maywar, M. Movassagbi, X. Liu, C. Xu, X. Wei, and D. M. Gill, 2.5 Tb/s (64 x 42.7 Gb/s) transmission over 40 x 100 km NZDSF using RZ-DPSK format and all-Raman-amplified spans. In Postdeadline Papers of OFC’02, Anaheim, CA, FC2, 2002.

    Google Scholar 

  47. Y. Emori, K. Tanaka, and S. Namiki, 100nm bandwidth flat-gain Raman amplifiers pumped and gain-equalised by 12-wavelength-channel WDM laser diode unit, IEE Electron. Lett., 35:16, 1355–1356, 1999.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Kidorf, H., Nissov, M., Foursa, D. (2004). Ultra-Long-Haul Submarine and Terrestrial Applications. In: Islam, M.N. (eds) Raman Amplifiers for Telecommunications 2. Springer Series in Optical Sciences, vol 90/2. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21585-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21585-3_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-40656-5

  • Online ISBN: 978-0-387-21585-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics