Skip to main content

Raman Impairments in WDM Systems

  • Chapter
Raman Amplifiers for Telecommunications 2

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 90/2))

  • 474 Accesses

Abstract

In most chapters of this book, stimulated Raman scattering (SRS) is invoked intentionally. Pump radiation is coupled into the fiber carrying the signal radiation to generate Raman gain. The Raman gain can be used very advantageously, for example, to improve the optical signal-to-noise ratio (OSNR) budget by distributed amplification in the transmission fiber. However, SRS also occurs unintentionally in WDM transmission systems. Due to the large number of channels inside the Raman gain bandwidth, total power can add up to levels where considerable amounts of SRS are generated, with the signal channels acting as pumps. In contrast to the beneficial effects of intentional Raman pumping, the unintended generation of SRS usually degrades system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Einstein, Zur Quantentheorie der Strahlung, Physikalische Zeitschrift, 18:121–128, (March), 1917.

    Google Scholar 

  2. A. Yariv, Introduction to Quantum Electronics. 3d ed., New York: Holt, Rinehart and Winston 129–132, 1985.

    Google Scholar 

  3. R. G. Smith, Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering, Appl. Optics, 11:11 (Nov.), 2489–2494, 1972.

    Article  ADS  Google Scholar 

  4. G. Agrawal, Nonlinear Fiber Optics, 2d ed., New York: Academic, 319–322, 1995.

    Google Scholar 

  5. R M. Krummrich, R. Neuhauser, and G Fischer, Experimental comparison of Raman thresholds of different transmission fiber types. In Proceedings of the 26th European Conference on Optical Communication (ECOC 2000), Sept. 3-7, Munich, Vol. 3, P1.5, 133–134, 2000.

    Google Scholar 

  6. S. Bigo, S. Gauchard, A. Bertaina, and J.-P. Hamaide, Experimental investigation of stimulated Raman scattering limitation on WDM transmission over various types of fiber infrastructures, IEEE Photon. Technol. Lett., 11:6 (June), 671–673, 1999.

    Article  ADS  Google Scholar 

  7. T. Miyakawa, I. Morita, and N. Edagawa, 40 Gbit/s x 25 WDM unrepeatered transmission over 362 km. In Proceedings of the Conference on Optical Amplifiers and their Applications (OAA 2002), July 14-17, Vancouver, Canada, OTuA1, 1–3, 2002.

    Google Scholar 

  8. M. Zirngibl, Analytical model of Raman gain effects in massive wavelength division multiplexed transmission systems, Electron. Lett., 34:8, 789–790, 1998.

    Article  Google Scholar 

  9. P.M. Krummrich, E. Gottwald, A. Mayer, C.-J. Weiske, and G Fischer, Influence of stimulated Raman scattering on the channel power balance in bidirectional WDM transmission. In Proceedings of the Conference on Optical Fiber Communication (OFC 1999), San Diego, Feb. 21–26, Vol. 2, WJ6, 171–173, 1999.

    Google Scholar 

  10. S. Bigo, S. Gauchard, A. Bertaina, and J. Hamaide, Investigation of stimulated Raman scattering limitation on WDM transmission over various types of fiber infrastructures. In Proceedings of the Conference on Optical Fiber Communication (OFC 1999), San Diego, Feb. 21–26, Vol. 2, WJ7, 174–176, 1999.

    Google Scholar 

  11. V J. Mazurczuyk, G. Shaulov, and E. A. Golovchenko, Accumulation of gain tilt in WDM amplified systems due to Raman crosstalk, IEEE Photon. Technol. Lett., 12:11, 1573–1575, 2000.

    Article  ADS  Google Scholar 

  12. M. Takeda, S. Kinoshita, Y Sugaya, and T. Tanaka, ed. S. Kinoshita, J. C. Livas, and G. van den Hoven, Active gain-tilt equalization by preferentially 1.43 mu m-or 1.48 mu m-pumped Raman amplification. In OSA Trends in Optics and Photonics Series (TOPS 1999), Vol. 30, Conference on Optical Amplifiers and their Applications, Nara, Japan, June 9–11, 101–105, 1999.

    Google Scholar 

  13. P.M. Krummrich, A. Mayer, and G Fischer, Noise penalty caused by stimulated Raman scattering in bidirectional DWDM transmission. In Proceedings of the Conference on Optical Amplifiers and their Applications (OAA 1999), Nara, Japan, ThB3, 102–105, 1999.

    Google Scholar 

  14. P.M. Krummrich, E. Gottwald, A. Mayer, R. Neuhauser, and G Fischer, Channel power transients in photonic networks caused by stimulated Raman scattering. In Proceedings of the Conference on Optical Amplifiers and their Applications (OAA 2000), Quebec, July 9–12, OTuC6, 143–145, 2000.

    Google Scholar 

  15. M. Ikeda, Stimulated Raman amplification characteristics in long span single mode silica fibers, Optics Commun. 39:148–152, 1981.

    Article  ADS  Google Scholar 

  16. A. Tomita, Cross talk caused by stimulated Raman scattering in single-mode wavelength-division multiplexed systems, Optics Lett., 8:7 (July), 412–414, 1983.

    Article  ADS  Google Scholar 

  17. A. R. Chraplyvy and P. S. Henry, Performance degradation due to stimulated Raman scattering in wavelength-division-multiplexed optical fibre systems, Electron. Lett. 19:16 (Aug.), 641–643, 1983.

    Article  ADS  Google Scholar 

  18. A. R. Chraplyvy, Optical power limits in multi-channel wavelength-division multiplexed systems, Electron. Lett., 20:2 (Jan.), 58–59, 1984.

    Article  ADS  Google Scholar 

  19. D. Cotter and A. M. Hill, Stimulated Raman crosstalk in optical transmission: Effects of group velocity dispersion, Electron. Lett., 20:4 (Feb.), 185–187, 1984.

    Article  Google Scholar 

  20. R. H. Stolen and A. M. Johnson, The effect of pulse walk-off on stimulated Raman scattering in fibers, IEEE J. Quantum Electron., QE-22:11 (Nov.), 2154–2160, 1986.

    Article  ADS  Google Scholar 

  21. D. N. Christodoulides and R. I. Joseph, Theory of stimulated Raman scattering in optical fibers in the pulse walk-off regime, IEEE J. Quantum Electron., QE-25:273–279, 1989.

    Article  ADS  Google Scholar 

  22. M. S. Kao, ON/OFF ratio degradation of high density WDM systems due to Raman crosstalk, Electron. Lett., 26:14 (July), 1034–1035, 1990.

    Article  Google Scholar 

  23. R. Comuzzi, C. de Angelis, and G. Gianello, Improved analysis of the effects of stimulated Raman scattering in a multi-channel WDM communication system, European Trans. Telecommun. Related Technol., 3:3, 295–298, 1992.

    Article  Google Scholar 

  24. S. Tariq and J. C. Palais, A computer model of non-dispersion-limited stimulated Raman scattering in optical fiber multiple-channel communications, IEEE J. Lightwave Technol., 11:12 (Dec.), 1914–1924, 1993.

    Article  ADS  Google Scholar 

  25. X. Zhang, B. F. Jorgensen, F Ebskamp, and R. J. Pedersen, Input power limits and maximum capacity in long-haul WDM lightwave systems due to stimulated Raman scattering, Optics Commun. 107:5-6, 358–360, 1994.

    Article  ADS  Google Scholar 

  26. F. Forghieri, R. W. Tkach, and A. R. Chraplyvy, Effect of modulation statistics on Raman crosstalk in WDM systems, IEEE Photon. Technol. Lett. 7:1, 101–103, 1995.

    Article  ADS  Google Scholar 

  27. G. P. Agrawal, Raman-induced crosstalk. In Nonlinear Fiber Optics, New York: Academic, 334–336, 1995.

    Google Scholar 

  28. S. Tariq and J. C. Palais, Stimulated Raman scattering in fiber optic systems, Fiber Integ. Optics 15:4 (April), 335–352, 1996.

    Article  Google Scholar 

  29. D. N. Christodoulides and R. B. Jander, Evolution of stimulated Raman crosstalk in wavelength division multiplexed systems, IEEE Photon. Technol. Lett., 8:12 (Dec.), 1722–1724, 1996.

    Article  ADS  Google Scholar 

  30. J. Wang, X. Sun, and M. Zhang, Effect of group velocity dispersion on stimulated Raman crosstalk in multichannel transmission systems, IEEE Photon. Technol. Lett., 10:4, 540–542, 1998.

    Article  ADS  Google Scholar 

  31. L. Rapp, Impact of stimulated Raman scattering in WDM systems using different types of fiber, Int. J. Electron. Commun., 52:5, 302–309, 1998.

    Google Scholar 

  32. K.-P Ho, Statistical properties of stimulated Raman crosstalk in WDM systems, IEEE J. Lightwave Technol., 18:7, 915–921, 2000.

    Article  ADS  Google Scholar 

  33. S. Norimatsu and T. Yamamoto, Waveform distortion due to stimulated Raman scattering in wide-band WDM transmission systems, IEEE J. Lightwave Technol., 19:2 (Feb.), 159–171, 2001.

    Article  ADS  Google Scholar 

  34. A. G Grandpierre, D. N. Christodoulides, W. E. Schiesser, C. M. McIntosh, and J. Toulouse, Stimulated Raman scattering crosstalk in massive WDM systems under the action of group velocity dispersion, Optics Commun., 194:4–6, 319–323, 2001.

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Krummrich, P.M. (2004). Raman Impairments in WDM Systems. In: Islam, M.N. (eds) Raman Amplifiers for Telecommunications 2. Springer Series in Optical Sciences, vol 90/2. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21585-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21585-3_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-40656-5

  • Online ISBN: 978-0-387-21585-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics