Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 90/1))

Abstract

Spontaneous emission is the inevitable consequence of gain in an optical amplifier. In this chapter, the definition of noise figure is shown to be useful only in characterizing shot noise and signal-spontaneous beat noise. The noise characteristics of both discrete and distributed Raman amplifiers are then presented. The choice of discrete amplifiers alone, or together with distributed optical amplifiers results as a trade-off between maximizing optical signal-to-noise ratio at the expense of increases in nonlinear distortion of the signal due to high signal intensities. Hansen et al. [1] showed that distributed amplification could be used to obtain a significant improvement in system margin that could be used to upgrade the transmission capacity, either in terms of more channels, or a faster line rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.B. Hansen, L. Eskildsen, S.G. Grubb, A.J. Stentz, T.A. Strasser, J. Judkins, J.J. DeMarco, R. Pedrazzani, and D.J. DiGiovanni, Capacity upgrades of transmission systems by Raman amplification, IEEE Photon. Technol. Lett., 9:2 (Feb.), 262–264, 1997.

    Google Scholar 

  2. H.T. Friis, Noise figure of radio receivers, Proc IRE, 32:419–422, 1944.

    Article  Google Scholar 

  3. E. Desurvire, Erbium Doped Fiber Amplifiers, NewYork: Wiley, 98, 1994.

    Google Scholar 

  4. H.A. Haus, The noise figure of optical amplifiers, IEEE Photon. Technol. Lett., 10:11 (Nov.), 1998.

    Google Scholar 

  5. E. Desurvire, Comments on “The noise figure of optical amplifiers”, IEEE Photon. Technol. Lett., 11:5, (May), 620 and 621, 1999.

    Google Scholar 

  6. C. Chen and W.S. Wong, Transient effects in Raman optical amplifiers, OAA2001, Paper OMC2, 2000.

    Google Scholar 

  7. R.G. Smith, Optical power handling capacity of low loss optical fiber as determined by stimulated Raman and Brillouin scattering, Appl. Optics, 11:11 (Nov.), 2489–2494, 1972.

    Google Scholar 

  8. J. Auyeung and A. Yariv, Spontaneous and stimulated Raman scattering in long low loss fibers, IEEE J. Quantum Electron., QE-14:5, (May), 347–352, 1978.

    Google Scholar 

  9. S. Tariq and J.C. Palais, A computer model of non-dispersion-limited stimulated Raman scattering in optical fiber multiple-channel communications, J. Lightwave Technol., 11:12 (Dec.), 1914–1924, 1993.

    Google Scholar 

  10. H. Kidorf, K. Rottwitt, M. Nissov, M. Ma and E. Rabarijaona, Pump interactions in a 100-nm bandwidth Raman amplifier, IEEE Photon. Technol. Lett., 11:5, (May), 530–532, 1999.

    Google Scholar 

  11. R.H. Stolen and M.A. Bosch, Low-frequency and low temperature Raman scattering in silica fibers, Phys. Rev. Lett., 48:805–808, 1982.

    Article  ADS  Google Scholar 

  12. P.B. Hansen, L. Eskildsen, A.J. Stentz, T.A. Strasser, J. Judkins, J.J. DeMarco, R. Pedrazzi, and D.J. DioGiovanni, Rayleigh scattering limitations in distributed Raman preamplifiers, IEEE Photon. Technol. Lett., 10: (Jan.), 159–161, 1998.

    Google Scholar 

  13. S.T. Davey, D.L. Williams, B.J. Ainslie, W.J.M. Rothwell, and B. Wakefield, Optical gain spectrum of GeO2-SiO2 Raman fibre amplifiers, IEE Proceedings, 136: Pt J, 301–306, (1989).

    Google Scholar 

  14. K. Rottwitt, M. Nissov, and F. Kerfoot, Detailed analysis of Raman amplifiers for long-haul transmission, OFC 1998, 30, TuG1, 1998.

    Google Scholar 

  15. M.A. Farahani and T. Gogolla, Spontaneous Raman scattering in optical fibers with modulated probe light for distributed temperature Raman remote sensing, J. Lightwave Technol., 17:8 (August), 1379–1391, 1999.

    Google Scholar 

  16. R.G. Smith, Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering, Appl. Optics, 11:11, (Nov.), 2489–2494, 1972.

    Google Scholar 

  17. S.R. Chinn, Analysis of counter-pumped small-signal fibre Raman amplifiers, Electron. Lett., 33:7, (March 27), 2489–2494, 1997.

    Google Scholar 

  18. S.A.E Lewis, S.V. Chernikov and J.R. Taylor, Gain and saturation characteristics of dual wavelength-pumped silica-fibre Raman amplifiers, Electron. Lett., 35:14, (July 8), 1178–1179, 1999.

    Google Scholar 

  19. C.R.S. Fludger, Dynamic gain tilt of a gain flattened distributed Raman amplifier under saturation in a DWDM system, OAA 2000, Quebec City, July, 2000.

    Google Scholar 

  20. C.R.S Fludger, A. Maroney, N. Jolley, and R.J. Mears, An analysis of the improvements in OSNR from distributed Raman amplifiers using modern transmission fibres, OFC 2000, FF2-1, 2000.

    Google Scholar 

  21. R. Billington, Measurement methods for stimulated Raman and Brillouin scattering in optical fibres, NPL Report, COEM 31, June, 1999.

    Google Scholar 

  22. S.T. Davey, D.L. Williams, D.M. Spirit, and B J. Ainslie, The fabrication of low loss high NA silica fibres for Raman amplification, SPIE 1171: Fiber Laser Sources and Amplifiers, 1989.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Fludger, C.R.S. (2004). Linear Noise Characteristics. In: Islam, M.N. (eds) Raman Amplifiers for Telecommunications 1. Springer Series in Optical Sciences, vol 90/1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21583-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21583-9_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-00751-9

  • Online ISBN: 978-0-387-21583-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics