Skip to main content

Fundamentals of Raman Amplification in Fibers

  • Chapter
Raman Amplifiers for Telecommunications 1

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 90/1))

Abstract

Raman scattering was discovered independently and almost simultaneously in 1928 by groups in India and Russia [1, 2]. If C.V. Raman had not published first we might know Raman scattering as the Landsberg-Mandelstam Effect. Raman was awarded the 1930 Nobel Prize for the discovery, which was not shared with the Russians. Neither group was actually looking for what we now know as the Raman effect [3]. Landsberg and Mandelstahm were looking for a small wavelength shift due to scattering from thermal fluctuations, now called “Brillouin scattering.” Raman was seeking an optical analogue of the Compton effect. It was quickly understood that Raman scattering is a shift in the frequency of scattered light due to interaction of the incident light with high-frequency vibrational modes of a transparent material. It was later pointed out that the correct interpretation had been predicted by A. Smekal in an obscure 1923 theoretical paper [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.V. Raman and K.S. Krishnan, “A new type of secondary radiation,” Nature 121:501–502, 1928; The optical analogue of the Compton effect, 121:711, 1928.

    Article  ADS  Google Scholar 

  2. G.S. Landsberg and L.I. Mandelstam, Eine neue erscheinung bei der lichtzerstreuung in krystallen, Naturwissenschaften, 16:557–558, 1928.

    Article  Google Scholar 

  3. I.L. Fabilinski, Seventy years of combination (Raman) scattering, Physics-Uspekhi, 41:1229–1247, 1998.

    Article  ADS  Google Scholar 

  4. A. Smekel, Zur quantentheorie der dispersion, Naturwissenschaften 11:873–875, 1923.

    Article  ADS  Google Scholar 

  5. B.P. Stoicheff, Raman effect. inMethods of Experimental Physics, vol. 3, ed. D. Williams, New York: Academic, Ch. 2.3, 111–155, 1962.

    Google Scholar 

  6. J.R. Ferraro and K. Nakamoto, Introductory Raman Spectroscopy, San Diego: Academic, 1994.

    Google Scholar 

  7. E.J. Woodbury and W.K. Ng, Ruby laser operation in the near IR, Proc IRE, 50:2367, 1962.

    Google Scholar 

  8. R.W. Hellwarth, Theory of stimulated Raman scattering, Phys. Rev., 130:1850–1852, 1963.

    Article  ADS  Google Scholar 

  9. R.W. Terhune, Nonlinear optics. Solid State Des., 4:11, (Nov.) 38–46, 1963.

    Google Scholar 

  10. R.G. Smith, Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering, Appl. Opt., 11:2489–2494, 1972.

    Article  ADS  Google Scholar 

  11. R.H. Stolen, E.P. Ippen, and A.R. Tynes, Raman oscillaton in glass optical waveguide, Appl. Phys. Lett., 20:62–64, 1972.

    Article  ADS  Google Scholar 

  12. R.H. Stolen and E.P. Ippen, Raman gain in glass optical waveguides, Appl. Phys. Lett., 22: 276–278, 1973.

    Article  ADS  Google Scholar 

  13. W. Heitler, The Quantum Theory of Radiation, 3rd ed., London: Oxford University Press, 192, 1954.

    MATH  Google Scholar 

  14. A. Yariv, Quantum Electronics, 3d ed., New York: Wiley, 1989.

    Google Scholar 

  15. G. Placzek, Handbuch der Radiologie VI Leipzig: Akademische Verlagsgellschaft, Teil II205, 1934.

    Google Scholar 

  16. R.J. Bell, N.F. Bird, and P. Dean, Vibrational modes of AB2 glasses, J. Phys. C (Proc. Phys. Soc.), 1:299, 1968.

    ADS  Google Scholar 

  17. W.J. Jones and B.P. Stoicheff, Inverse Raman spectra: Induced absorption at optical frequencies, Phys. Rev. Lett., 13:657–659, 1964.

    Article  ADS  Google Scholar 

  18. R.H. Stolen, Relation between the effective area of a single-mode fiber and the capture fraction of spontaneous Raman scattering, J. Opt. Soc. Am. B, 19:498–501, 2002.

    Article  ADS  Google Scholar 

  19. J. Streckert and F. Wilczewski, Relationship between nonlinear effective core area and backscattering capture fraction for single mode optical fibres, Electron. Lett., 32:760–762, 1996.

    Article  Google Scholar 

  20. G.P. Agrawal, Fiber-Optic Communication Systems, New York: Wiley, 1997.

    Google Scholar 

  21. K. Mochizuki, N. Edagawa, and Y Iwamoto, Amplified spontaneous Raman scattering in fiber Raman amplifiers, J. Lightwave Technol., LT-4:1328–1333, 1986; Y Aoki, Properties of fiber Raman amplifiers and their applicability to digital optical communication systems, J. Lightwave Technol., 6:1225-1239, 1988.

    Article  ADS  Google Scholar 

  22. J. Ranka, Unpublished notes.

    Google Scholar 

  23. P.W. Milonni, The Quantum Vacuum, An Introduction to Quantum Electrodynamics, New York: Academic Press, 1994.

    Google Scholar 

  24. R.H. Stolen, Inverse Raman scattering and the 3 dB noise limit of a fiber Raman amplifier, Can. J. Phys., 78:391–396, 2000.

    Article  ADS  Google Scholar 

  25. Y.R. Shen, The Principles of Nonlinear Optics, New York: Wiley, 1984.

    Google Scholar 

  26. R.H. Stolen, J.P. Gordon, W.J. Tomlinson, and H.A. Haus, Raman response function of silica-core fibers, J. Opt. Soc. Am. B, 6:1159–1166, 1989.

    Article  ADS  Google Scholar 

  27. R.H. Stolen and W.J. Tomlinson, Effect of the Raman part of the nonlinear refractive index on propagation of ultrashort optical pulses in fibers, J. Opt. Soc. Am. B, 9:565–573, 1992.

    Article  ADS  Google Scholar 

  28. R.H. Stolen, C. Lee, and R.K. Jain, Development of the stimulated Raman spectrum in single-mode fibers, J. Opt. Soc. Am. B, 1:652–657, 1984. The low frequency data include subsequent measurements of scattering at small frequency shift and low temperature. The perpendicular spectrum was compiled from several published sources. Both curves are available as data files from the author.

    Article  ADS  Google Scholar 

  29. S.T. Davey, D.L. Williams, B.J. Ainslie, W.J.M. Rothwell, and B. Wakefield, Optical gain spectrum of GeO2-SiO2 Raman fibre amplifiers, IEEProc. J, 136:301–306, 1989.

    Google Scholar 

  30. R.H. Stolen, Polarization effects in fiber Raman and Brillouin Lasers, IEEE J. Quantum Electron., QE-15:1157, 1979.

    Article  ADS  Google Scholar 

  31. D.J. Dougherty, F.X. Kartner, H.A. Haus, and E.P. Ippen, Measurement of the Raman gain spectrum of optical fibers, Opt. Lett., 20:31–33, 1995.

    Article  ADS  Google Scholar 

  32. A.E. Miller, K. Nassau, B. Lyons, and M.E. Lines, The intensity of Raman scattering in glasses containing heavy metal oxides, J. Non-Cryst. Solids, 99:289–307, 1988.

    Article  ADS  Google Scholar 

  33. M.E. Lines, Raman gain estimates for high-gain optical fibers, J. Appl. Phys., 62:4363–4370, 1987.

    Article  ADS  Google Scholar 

  34. E.P. Ippen, Low-power quasi-cw Raman oscillator, Appl. Phys. Lett., 16:303–305, 1970.

    Article  ADS  Google Scholar 

  35. V.I. Karpov, E.M. Dianov, A.S. Kurkov, V.M. Paramonov, V.N. Protopopov, M.P. Bachyn-ski, and W.R.L. Clements, LD-pumped 1.48-μm laser based on Yb-doped double-clad fiber and phosphorosilicate-fiber Raman converter. In Proceedings of OFC’99 (San Diego, Feb. 21–26), paper WM3, 1999.

    Google Scholar 

  36. A.R. Chraplyvy and J. Stone, Single-pass mode-locked or Q-switched pump operation of D2 gas-in-glass fiber Raman lasers operating at 1.56 μm wavelength, Opt. Lett., 10:344–346, 1985.

    Article  ADS  Google Scholar 

  37. Y.R. Shen and N. Bloembergen, Theory of stimulated Brillouin and Raman scattering, Phys. Rev., 137A:1787–1805, 1965.

    Article  MathSciNet  ADS  Google Scholar 

  38. J. AuYeung and A. Yariv, Spontaneous and stimulated Raman scattering in low loss fibers, IEEE J. Quantum Electron, QE-14:347–352, 1978.

    Article  ADS  Google Scholar 

  39. M. Sheik-Bahae, Dispersion of bound electronic nonlinear refraction in solids, IEEE J. Quantum Electron. 27:1296–1309, 1991.

    Article  ADS  Google Scholar 

  40. N.L. Boling, A.J. Glass, and A. Owyoung, Empirical relationship for predicting nonlinear refractive index changes in optical solids, IEEE J. Quantum Electron., QE-14:601–608, 1978.

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Stolen, R.H. (2004). Fundamentals of Raman Amplification in Fibers. In: Islam, M.N. (eds) Raman Amplifiers for Telecommunications 1. Springer Series in Optical Sciences, vol 90/1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21583-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21583-9_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-00751-9

  • Online ISBN: 978-0-387-21583-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics