Skip to main content

The Binding of Ethene and Its Congeners: Prototypical Metal π-Complexes

  • Chapter
  • First Online:
Landmarks in Organo-Transition Metal Chemistry

Part of the book series: Profiles in Inorganic Chemistry ((PIIC))

  • 1155 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In English: “Perception means bringing together observations and the inner ideas, and reconciling their agreement”.

  2. 2.

    Interestingly, more recent MO calculations on silver(I) and copper(I) complexes have indicated that there is much less back donation between these metals and the olefin than in the related platinum compounds, and that the interaction might be primarily electrostatic (see [32], p. 4).

  3. 3.

    In his textbook “Organotransition Metal Chemistry” (Wiley Interscience, New York, 1986) Akio Yamamoto included several short paragraphs entitled “Intermezzos”, in which he mentioned some anecdotes presented during his classes at the Tokyo Institute of Technology “to help students stay awake”. In one of those intermezzos, Akio reported that in the course of his lectures Wilke frequently called the catalytically active nickel complexes having no supporting ligands such as CO, PR3 or cyclopentadienyl “naked nickel”. An American chemist thus nicknamed him “a man who brought sex into chemistry” and it seems that Wilke enjoyed this name.

  4. 4.

    In one of his essays [113], Wolfgang Herrmann (see Fig. 9.4) referred the reader to a paper by Paul Sabatier (Nobel laureate for Chemistry 1912), in which he mentioned that he attempted to coordinate molecules such as N2O, NO, NO2, ethene, acetylene, etc. to nickel in a similar way as it was done by Mond for the preparation of nickel tetracarbonyl. Sabatier observed that “when ethylene was passed through a column containing nickel, no reaction occurs at ordinary temperature....but above 300°C the column starts to glow and the gas begins to decompose; not only carbon and hydrogen are produced, but also larger amounts of ethane. The latter compound must have come from hydrogenation of ethylene resulting from some special property of nickel, which appeared to be a hydrogenation catalyst”. Though no olefin nickel complex was formed (possibly as a short-lived intermediate), this observation initiated a series of further investigations which finally led to the Nobel prize.

  5. 5.

    see [69], p. 102.

  6. 6.

    [69], Editor’s Note, p. xix.

References

  1. P. Pfeiffer, Organische Molekülverbindungen (Verlag Ferdinand Enke, Stuttgart, 1927, p. 209).

    Google Scholar 

  2. M. S. Kharasch, and T. A. Ashford, Coordination Compounds of Platinous Halides with Unsaturated (Ethylene) Substances, J. Am. Chem. Soc. 58, 1733–1738 (1936).

    CAS  Google Scholar 

  3. R. N. Keller, Coordination Compounds of Olefins with Metallic Salts, Chem. Rev. 28, 229–267 (1941).

    CAS  Google Scholar 

  4. W. C. Zeise, Ueber Acechlorplatin, nebst Bemerkungen über einige andere Producte der Einwirkung zwischen Platinchlorid und Aceton, J. Prakt. Chem. 20, 193–234 (1840).

    Google Scholar 

  5. W. Prandtl, and K. A. Hofmann, Ueber Platin-Kohlenstoff-Verbindungen, Ber. dtsch. chem. Ges. 33, 2981–2983 (1900).

    CAS  Google Scholar 

  6. R. D. Gillard, B. T. Heaton, and M. F. Pilbrow, 4-Methylpent-4-en-2-one (Isomesityl Oxide) Complex of Platinum(II), J. Chem. Soc. A 1970, 353–355.

    Google Scholar 

  7. C. Liebermann, and C. Paal, Ueber Derivate des Allylamins, Ber. dtsch. chem. Ges. 16, 523–534 (1883).

    Google Scholar 

  8. M. Herberhold, Metal π-Complexes, Vol. II: Complexes with Mono-Olefinic Ligands (Elsevier, Amsterdam, 1972, Chapter 2).

    Google Scholar 

  9. R. G. Denning, and L. M. Venanzi, Platinum Complexes with Unsaturated Amines. Part I. Complexes with Allylamines, J. Chem. Soc.3241–3247 (1963).

    Google Scholar 

  10. E. Biilmann, Ueber die Einwirkung von Allylalkohol auf Kaliumplatochlorid, Ber. dtsch. chem. Ges. 33, 2196–2201 (1900).

    CAS  Google Scholar 

  11. P. Pfeiffer, and H. Hoyer, Komplexverbindungen der Äthylenkörper mit Platinsalzen, Z. anorg. allg. Chem. 211, 241–248 (1933).

    CAS  Google Scholar 

  12. K. A. Hofmann, and J. von Narbutt, Verbindungen von Platinchlorür mit Di-cyclopentadien, Ber. dtsch. chem. Ges. 41, 1625–1628 (1908).

    CAS  Google Scholar 

  13. J. R. Doyle, and H. B. Jonassen, The Structure of Dicyclopentadienedichloroplatinum(II), J. Am. Chem. Soc. 78, 3965–3967 (1956).

    CAS  Google Scholar 

  14. N. C. Baenziger, J. R. Doyle, G. F. Richards, and L. C. Carpenter, Advances in the Chemistry of the Coordination Compounds (McMillan, New York, 1961, p. 136).

    Google Scholar 

  15. A. D. Hel’man, Complex Compounds of Platinum and Butadiene (Bivinyl), Dokl. Akad. Nauk SSSR 23, 532–536 (1939).

    Google Scholar 

  16. A. D. Hel’man, Reaction of Unsaturated Molecules with Sodium Chloroplatinate, Dokl. Akad. Nauk SSSR 31, 761–764 (1941).

    Google Scholar 

  17. P. E. Slade Jr., and H. B. Jonassen, Coordination Compounds of Butadiene with Platinum(II), Palladium(II) and Copper(I) Halides, J. Am. Chem. Soc. 79, 1277–1279 (1957).

    CAS  Google Scholar 

  18. M. S. Kharasch, R. C. Seyler, and F. R. Mayo, Coordination Compounds of Palladous Chloride, J. Am. Chem. Soc. 60, 882–884 (1938).

    CAS  Google Scholar 

  19. J. Smidt, W. Hafner, R. Jira, J. Sedlmeier, R. Sieber, R. Rüttinger, and H. Kojer, Katalytische Umsetzungen von Olefinen an Platinmetall-Verbindungen, Angew. Chem. 71, 176–182 (1959).

    CAS  Google Scholar 

  20. L. Hintermann, Wacker Type Oxidations, in. Transition Metals for Organic Synthesis, Second Ed. (Eds. M. Beller and C. Bolm, Wiley-VCH, Weinheim, 2004, Vol. 2, Chapter 2.8).

    Google Scholar 

  21. M. Berthelot, Observations relatives à l’action des sels cuivreux sur les carbures d’hydrogène et sur l’oxyde de carbone, Ann. Chim. Phys. 23, 32–39 (1901).

    Google Scholar 

  22. W. Manchot, and W. Brandt, Ueber die Cuproverbindungen des Aethylens und des Kohlenoxyds, Liebigs Ann. Chem. 370, 286–296 (1909).

    Google Scholar 

  23. H. Tropsch, and W. J. Mattox, Absorption of Ethylene by Solid Cuprous Chloride, J. Am. Chem. Soc. 57, 1102–1103 (1935).

    CAS  Google Scholar 

  24. E. R. Gilliland, J. E. Seebold, J. R. FitzHugh and P. S. Morgan, Reaction of Olefins with Solid Cuprous Halides, J. Am. Chem. Soc. 61, 1960–1962 (1939).

    CAS  Google Scholar 

  25. W. F. Eberz, H. J. Welge, D. M. Yost, and H. J. Lucas, The Rate of Hydration of Isobutene in the Presence of Silver Ion. The Nature of the Isobutene–Silver Complex, J. Am. Chem. Soc. 59, 45–49 (1937).

    CAS  Google Scholar 

  26. S. Winstein, and H. J. Lucas, The Coordination of Silver Ion with Unsaturated Compounds, J. Am. Chem. Soc. 60, 836–847 (1938).

    CAS  Google Scholar 

  27. K. S. Pitzer, Electron Deficient Molecules. I. The Principle of Hydroboron Structures, J. Am. Chem. Soc. 67, 1126–1132 (1945).

    CAS  Google Scholar 

  28. H. Reihlen, A. Gruhl, G. von Hessling, and O. Pfrengle, Über Carbonyle und Nitrosyle, Liebigs Ann. Chem. 482, 161–182 (1930).

    CAS  Google Scholar 

  29. E. Krause and A. von Grosse, Die Chemie der metall-organischen Verbindungen (Gebrüder Bornträger, Berlin, 1937).

    Google Scholar 

  30. H. J. Emeléus, and J. S. Anderson, Modern Aspects of Inorganic Chemistry (Routledge and Kegan Paul Ltd., London, 1952, Chapter 8).

    Google Scholar 

  31. M. J. S. Dewar, A Review of the π-Complex Theory, Bull. Soc. Chim. Fr. 1951, C71–C79 (1951).

    Google Scholar 

  32. D. P. M. Mingos, A Historical Perspective on Dewar’s Landmark Contribution to Organometallic Chemistry, J. Organomet. Chem. 635, 1–8 (2001).

    CAS  Google Scholar 

  33. M. J. S. Dewar, Mechanism of the Benzidine and Related Rearrangements, Nature 156, 784 (1945).

    CAS  Google Scholar 

  34. M. J. S. Dewar, The Mechanism of Benzidine-type Rearrangements, and the Role of π-Electrons in Organic Chemistry, J. Chem. Soc. 1946, 406–408.

    Google Scholar 

  35. A. D. Walsh, Structures of Ethylene Oxide and Cyclopropane, Nature 159, 165 (1947).

    CAS  Google Scholar 

  36. H. J. Taufen, M. J. Murray, and F. F. Cleveland, Effect of Silver Ion Coordination Upon the Raman Spectra of Some Unsaturated Compounds, J. Am. Chem. Soc. 63, 3500–3503 (1941).

    CAS  Google Scholar 

  37. J. Chatt, The Addition Compounds of Olefins with Mercuric Salts, Chem. Rev. 48, 7–43 (1951).

    CAS  Google Scholar 

  38. J. Chatt, and L. A. Duncanson, Infrared Spectra and Structure: Attempted Preparation of Acetylene Complexes, J. Chem. Soc. 1953, 2939–2947.

    Google Scholar 

  39. M. J. S. Dewar, and G. P. Ford, Relationship Between Olefinic π Complexes and Three-Membered Rings, J. Am. Chem. Soc. 101, 783–791 (1979).

    CAS  Google Scholar 

  40. G. J. Kubas, Metal–Dihydrogen and σ-Bond Coordination: The Consummate Extension of the Dewar-Chatt-Duncanson Model for Metal–Olefin π Bonding, J. Organomet. Chem. 635, 37–68 (2001).

    CAS  Google Scholar 

  41. J. Chatt, L. M. Vallarino, and L. M. Venanzi, Diene Complexes of Platinum(II). The Structure of Hofmann and von Narbutt’s [Dicyclopentadiene(RO)PtCl], J. Chem. Soc. 1957, 2496–2505.

    Google Scholar 

  42. J. Chatt, L. M. Vallarino, and L. M. Venanzi, Some Diene Complexes of Palladium(II) and Their Alkoxy Derivatives, J. Chem. Soc. 1957, 3413–3416.

    Google Scholar 

  43. J. Chatt, and L. M. Venanzi, Diene Complexes of Rhodium(I), J. Chem. Soc. 1957, 4735–4741.

    Google Scholar 

  44. E. W. Abel, M. A. Bennett, and G. Wilkinson, Norbornadiene-Metal Complexes and Some Related Compounds, J. Chem. Soc. 1959, 3178–3182.

    Google Scholar 

  45. R. Cramer, μ-Dichlorotetraethylenedirhodium(I), Inorg. Chem. 1, 722–723 (1962).

    CAS  Google Scholar 

  46. L. Porri, A. Lionetti, G. Allegra, and A. Immirzi, Dibutadienerhodium(I) Chloride, Chem. Comm. 1965, 336–337.

    Google Scholar 

  47. G. Winkhaus, and H. Singer, Rhodium(I)-Komplexe mit Mono- und Diolefinen, Chem. Ber. 99, 3602–3609 (1966).

    CAS  Google Scholar 

  48. R. R. Schrock, and J. A. Osborn, Catalytic Hydrogenation Using Cationic Rhodium Complexes. I. Evolution of the Catalytic System and the Hydrogenation of Olefins, J. Am. Chem. Soc. 98, 2134–2143 (1976).

    CAS  Google Scholar 

  49. H. Werner, M. E. Schneider, M. Bosch, J. Wolf, J. H. Teuben, A. Meetsma, and S. I. Troyanov, Cationic and Neutral Diphenyldiazomethanerhodium(I) Complexes as Catalytically Active Species in the CC Coupling Reaction of Olefins with Diphenyldiazomethane, Chem. Eur. J. 6, 3052–3059 (2000).

    CAS  Google Scholar 

  50. B. Rybtchinski, S. Oevers, M. Montag, A. Vigalok, H. Rozenberg, J. M. L. Martin, and D. Milstein, Comparison of Steric and Electronic Requirements for CC and CH Bond Activation. Chelating vs. Nonchelating Case, J. Am. Chem. Soc. 123, 9064–9077 (2001).

    CAS  Google Scholar 

  51. B. F. Hallam, and P. L. Pauson, Butadiene- and cycloHexadiene-iron Tricarbonyls, J. Chem. Soc. 1958, 642–645.

    Google Scholar 

  52. O. S. Mills, and G. Robinson, The Structure of Butadieneiron Tricarbonyl, Proc. Chem. Soc. 1960, 421–422.

    Google Scholar 

  53. R. Burton, M. L. H. Green, E. W. Abel, and G. Wilkinson, Some New Organo-iron Complexes, Chem. & Ind. 1958, 1592.

    Google Scholar 

  54. R. Pettit, Metal Complexes with 2,2,1-Bicycloheptadiene, J. Am. Chem. Soc. 81, 1266 (1959).

    CAS  Google Scholar 

  55. T. A. Manuel, and F. G. A. Stone, Cyclooctatetraene-Iron Complexes, Proc. Chem. Soc. 1959, 90.

    Google Scholar 

  56. A. Nakamura, and N. Hagihara, Cyclooctatetraeneiron Tricarbonyl, Bull. Chem. Soc. Jpn. 32, 880–881 (1959).

    CAS  Google Scholar 

  57. M. D. Rausch, and G. N. Schrauzer, Cyclooctatetraeneiron Tricarbonyl and Cyclooctatetraenediiron Hexacarbonyl, Chem. & Ind. 1959, 957–958.

    Google Scholar 

  58. E. W. Abel, M. A. Bennett, and G. Wilkinson, Cycloheptatriene Metal Complexes, Proc. Chem. Soc. 1958, 152–153.

    Google Scholar 

  59. E. W. Abel, M. A. Bennett, R. Burton, and G. Wilkinson, The cycloHeptatriene-Metal Complexes and Related Compounds, J. Chem. Soc. 1958, 4559–4563.

    Google Scholar 

  60. M. A. Bennett, L. Pratt, and G. Wilkinson, Proton Resonance Spectra of Cycloheptatriene Complexes of Group VI Metals, J. Chem. Soc. 1961, 2037–2044.

    Google Scholar 

  61. T. A. Manuel, and F. G. A. Stone, 1,5-Cyclooctadienetungstentetracarbonyl, Chem. & Ind. 1959, 1349–1350.

    Google Scholar 

  62. M. A. Bennett, and G. Wilkinson, Some New Olefin Complexes of Mo(0) and Ru(II), Chem. & Ind. 1959, 1516.

    Google Scholar 

  63. E. O. Fischer, and W. Fröhlich, Zur Komplexbildung des Cyclooctadiens-(1.5) mit Metallhexacarbonylen, Chem. Ber. 92, 2995–2998 (1959).

    CAS  Google Scholar 

  64. B. Dickens, and W. N. Lipscomb, Molecular and Valence Structures of Complexes of Cyclooctatetraene with Iron Carbonyl, J. Chem. Phys. 37, 2084–2093 (1962).

    CAS  Google Scholar 

  65. J. D. Dunitz, and P. Pauling, Struktur des Cycloheptatrien-molybdän-tricarbonyls, C7H8Mo(CO)3, Helv. Chim. Acta 43, 2188–2197 (1960).

    CAS  Google Scholar 

  66. T. A. Manuel, and F. G. A. Stone, Cyclooctatetraene Iron Tricarbonyl and Related Compounds, J. Am. Chem. Soc. 82, 366–372 (1960).

    CAS  Google Scholar 

  67. E. O. Fischer, and H. Werner, Metal π-Complexes, (Elsevier, Amsterdam, 1966, Vol. I, p. 127).

    Google Scholar 

  68. F. A. Cotton, Bonding of Cyclooctatetraene to Metal Atoms: Simple Theoretical Considerations, J. Chem. Soc. 1960, 400–406.

    Google Scholar 

  69. F. G. A. Stone, Leaving No Stone Unturned (American Chemical Society, Washington, DC, 1993, p. 36).

    Google Scholar 

  70. F. A. Cotton, Fluxional Organometallic Molecules, Acc. Chem. Res. 1, 257–265 (1968).

    CAS  Google Scholar 

  71. H. Alper, Organic Syntheses with Iron Pentacarbonyl, in: Organic Synthesis via Metal Carbonyls (Eds. I. Wender and P. Pino, Wiley Interscience, New York, 1977, Vol. 2, pp. 545–593).

    Google Scholar 

  72. A. J. Pearson, Metallo-organic Chemistry (Wiley Interscience, New York, 1985, Chapters 7 and 8).

    Google Scholar 

  73. H. J. Dauben Jr., and L. R. Honnen, π-Tropenium-molybdenum-tricarbonyl Tetrafluoroborate, J. Am. Chem. Soc. 80, 5570–5571 (1958).

    CAS  Google Scholar 

  74. J. D. Munro, and P. L. Pauson, Reactions of Tricarbonyltropyliumchromium Perchlorate with Anions: A Novel Rearrangement, Proc. Chem. Soc. 1959, 267.

    Google Scholar 

  75. J. D. Munro, and P. L. Pauson, Cycloheptatriene- and Tropylium-Metal Complexes. Part I. The “Normal” Reaction of Tricarbonyltropyliumchromium Salts with Anions, J. Chem. Soc. 1961, 3475–3486.

    Google Scholar 

  76. A. Salzer, and H. Werner, Elektrophile und nucleophile Additionsreaktionen an Siebenringliganden in Tricarbonylmolybdän-Komplexen: Synthese von [C7H9Mo(CO)3]BF4, C7H9Mo(CO)3Cl und [C7H9P(C6H5)3]BF4, J. Organomet. Chem. 87, 101–108 (1975).

    CAS  Google Scholar 

  77. H. D. Murdoch, and E. Weiss, Eisencarbonylkomplexe des Äthylens und Hexatriens, Helv. Chim. Acta 46, 1588–1594 (1963).

    CAS  Google Scholar 

  78. E. Koerner von Gustorf, M. C. Henry, and C. Di Pietro, Photochemische Umsetzung von Fe(CO)5 mit Vinylchlorid, Styrol, Propylen und Vinyläthyläther, Z. Naturforsch., Part B, 21, 42–45 (1966).

    Google Scholar 

  79. H. P. Kögler, and E. O. Fischer, Cyclopentadienyl-mangan-äthylen-dicarbonyl, Z. Naturforsch., Part B, 15, 676 (1960).

    Google Scholar 

  80. E. O. Fischer, and M. Herberhold, Photochemische Substitutionsreaktionen an Cyclopentadienyl-mangan-tricarbonyl, in: Essays in Coordination Chemistry, Exper. Suppl. IX (Birkhäuser Verlag, Basel, 1964, p. 259–305).

    Google Scholar 

  81. E. O. Fischer, and P. Kuzel, Mesitylen-chrom(0)-äthylen-dicarbonyl, Z. Naturforsch., Part B, 16, 475–476 (1961).

    Google Scholar 

  82. J. A. Banister, S. M. Howdle, and M. Poliakoff, Preparative-scale Organometallic Chemistry in Supercritical Fluids; Isolation of [Cr(CO)5(C2H4)] as a Stable Solid at Room Temperature, J. Chem. Soc., Chem. Comm. 1993, 1814–1815.

    Google Scholar 

  83. I. W. Stolz, G. R. Dobson, and R. K. Sheline, Acetylene and Olefin Derivatives of Group VI Metal Carbonyls, Inorg. Chem. 2, 1264–1267 (1963).

    CAS  Google Scholar 

  84. E. Koerner von Gustorf, and F.-W. Grevels, Photochemistry of Metal Carbonyls, Metallocenes, and Olefin Complexes, Fortschr. Chem. Forsch. 13, 366–450 (1969).

    CAS  Google Scholar 

  85. F.-W. Grevels, J. Jacke, and S. Özkar, Photoreactions of Group 6 Metal Carbonyls with Ethene: Synthesis of trans-(η2-Ethene)2M(CO)4 (M = Cr, Mo, W), J. Am. Chem. Soc. 109, 7536–7537 (1987).

    CAS  Google Scholar 

  86. E. O. Fischer, H. P. Kögler, and P. Kuzel, Über neue π-Komplexe des Butadiens mit einfachen und substituierten Metallcarbonylresten, Chem. Ber. 93, 3006–3013 (1960).

    CAS  Google Scholar 

  87. M. Herberhold, Ph.D. Thesis, Universität München, 1963.

    Google Scholar 

  88. G. N. Schrauzer, Bisacrylonitrile Nickel and Related Complexes from the Reaction of Nickel Tetracarbonyl with Compounds Containing Activated Double Bonds, J. Am. Chem. Soc. 81, 5310–5312 (1959).

    CAS  Google Scholar 

  89. G. N. Schrauzer, Zur Kenntnis von Bis-acrylnitril-nickel(0), Chem. Ber. 94, 642–650 (1961).

    CAS  Google Scholar 

  90. G. N. Schrauzer, Some Advances in the Organometallic Chemistry of Nickel, Adv. Organomet. Chem. 2, 1–48 (1964).

    CAS  Google Scholar 

  91. G. N. Schrauzer, and H. Thyret, Zur Kenntnis von Bis-durochinon-nickel(0) and Cyclooctatetraene-durochinon-nickel(0), Z. Naturforsch., Part B, 16, 353–356 (1961).

    Google Scholar 

  92. G. N. Schrauzer, and H. Thyret, Neuartige ”Sandwich“-Verbindungen des Nickel(0). Zur Kenntnis von Durochinon-Nickel(0)-Komplexen mit cyclischen Dienen, Z. Naturforsch., Part B, 17, 73–76 (1962).

    Google Scholar 

  93. M. D. Glick, and L. F. Dahl, Structure and Bonding in 1,5-Cyclooctadiene-duroquinone-nickel, J. Organomet. Chem. 3, 200–221 (1965).

    CAS  Google Scholar 

  94. G. Wilke, Synthesen in der Cyclododekan-Reihe, Angew. Chem. 69, 397–398 (1957).

    Google Scholar 

  95. G. Wilke, Cyclooligomerization of Butadiene and Transition Metal π-Complexes, Angew. Chem. Int. Ed. Engl. 2, 105–115 (1963).

    Google Scholar 

  96. K. Fischer, K. Jonas, P. Misbach, R. Stabba, and G. Wilke, The “Nickel Effect”, Angew. Chem. Int. Ed. Engl. 12, 943–953 (1973).

    Google Scholar 

  97. H. W. B. Reed, The Catalytic Cyclic Polymerisation of Butadiene, J. Chem. Soc. 1954, 1931–1941.

    Google Scholar 

  98. G. Wilke, Neues über cyclische Butadien-Oligomere, Angew. Chem. 72, 581–582 (1960).

    Google Scholar 

  99. B. Bogdanovic, M. Kröner, and G. Wilke, Olefin-Komplexe des Nickel(0), Liebigs Ann. Chem. 699, 1–23 (1966).

    CAS  Google Scholar 

  100. D. J. Brauer, and C. Krüger, The Three-dimensional Structure of trans,trans,trans-1,5,9-Cyclododecatrienenickel, J. Organomet. Chem. 44, 397–402 (1972).

    CAS  Google Scholar 

  101. N. Rösch, and R. Hoffmann, Geometry of Transition Metal Complexes with Ethylene or Allyl Groups as the Only Ligands, Inorg. Chem. 13, 2656–2666 (1974).

    Google Scholar 

  102. K. Jonas, P. Heimbach, and G. Wilke, 1,5,9-Cyclododecatriene Complexes of Nickel, Angew. Chem. Int. Ed. Engl. 7, 949–950 (1968).

    CAS  Google Scholar 

  103. G. Wilke, Contributions to Organo-Nickel Chemistry, Angew. Chem. Int. Ed. Engl. 27, 185–206 (1988).

    Google Scholar 

  104. P. S. Skell, J. J. Havel, D. L. Williams-Smith, and M. J. McGlinchey, Reactions of Nickel Atoms with Unsaturated Hydrocarbons, J. Chem. Soc., Chem. Comm. 1972, 1098–1099.

    Google Scholar 

  105. P. W. Jolly, and G. Wilke, The Organic Chemistry of Nickel, Organonickel Complexes (Academic Press, New York, 1974, Vol. I, p. 258).

    Google Scholar 

  106. D. J. Brauer, and C. Krüger, The Stereochemistry of Transition Metal Cyclooctatetraenyl Complexes: Di-h3,h3’-cyclooctatetraenedinickel, a Sandwich Compound with Two Enveloped Nickel Atoms, J. Organomet. Chem. 122, 265–273 (1976).

    CAS  Google Scholar 

  107. G. Wilke, M. Kröner, and B. Bogdanovic, Ein Zwischenprodukt der Synthese von Cyclododecatrien aus Butadien, Angew. Chem. 73, 755–756 (1961).

    CAS  Google Scholar 

  108. B. Bogdanovic, P. Heimbach, M. Kröner, and G. Wilke, Zum Reaktionsablauf der Cyclotrimerisation von Butadien-(1.3), Liebigs Ann. Chem. 727, 143–160 (1969).

    CAS  Google Scholar 

  109. G. Wilke, B. Bogdanovic, P. Hardt, P. Heimbach, W. Keim, M. Kröner, W. Oberkirch, K. Tanaka, E. Steinrücke, D. Walter, and H. Zimmermann, Allyl-Transition Metal Systems, Angew. Chem. Int. Ed. Engl. 5, 151–164 (1966).

    CAS  Google Scholar 

  110. K. Fischer, K. Jonas, and G. Wilke, Tris(ethylene)nickel(0), Angew. Chem. Int. Ed. Engl. 12, 565–566 (1973).

    Google Scholar 

  111. C. Krüger, and Y.-H. Tsay, The Molecular and Crystal Structure of Bis(ethylene)(tricyclohexylphosphine)nickel, J. Organomet. Chem. 34, 387–395 (1972).

    Google Scholar 

  112. G. Wilke, and G. Herrmann, Ethylenebis(triphenylphosphine)nickel and Analogous Complexes, Angew. Chem. 74, 693–694 (1962).

    CAS  Google Scholar 

  113. W. A. Herrmann, 100 Years of Metal Carbonyls: a Serentipitous Chemical Discovery of Major Scientific and Industrial Impact, J. Organomet. Chem. 383, 21–44 (1990).

    Google Scholar 

  114. F. G. A. Stone, Synthetic Applications of d10 Metal Complexes, J. Organomet. Chem. 100, 257–271 (1975).

    CAS  Google Scholar 

  115. F. G. A. Stone, “Ligand-Free” Platinum Compounds, Acc. Chem. Res. 14, 318–325 (1981).

    CAS  Google Scholar 

  116. J. Müller, and P. Göser, Bis(1,5-cyclooctadiene)platinum(0), Angew. Chem. Int. Ed. Engl. 6, 364–65 (1967).

    Google Scholar 

  117. M. Green, J. A. K. Howard, J. L. Spencer, and F. G. A. Stone, Synthesis of Ethylene, Cyclo-octa-1,5-diene, Bicyclo [2.2.1]heptene, and trans-Cyclo-octene Complexes of Palladium(0) and Platinum(0); Crystal and Molecular Structure of Tris(bicyclo2.2.1]heptene)platinum, J. Chem. Soc., Dalton Trans. 1977, 271–277.

    Google Scholar 

  118. M. Green, J. A. K. Howard, M. Murray, J. L. Spencer, and F. G. A. Stone, Synthesis and Crystal and Molecular Structure of Tris-μ-(t-butylisocyanide)-tris-(t-butylisocyanide)-triangulo-triplatinum, J. Chem. Soc., Dalton Trans. 1977, 1509–1514.

    Google Scholar 

  119. N. M. Boag, M. Green, D. M. Grove, J. A. K. Howard, J. L. Spencer, and F. G. A. Stone, The Synthesis and Crystal Structure of Bis(diphenylacetylene)platinum, and Studies on Related Compounds, J. Chem. Soc., Dalton Trans. 1980, 2170–2181.

    Google Scholar 

  120. M. Green, A. Laguna, J. L. Spencer, and F. G. A. Stone, Bis(η-cyclo-octa-1,5-diene)-platinum and –palladium with Fluoroolefins, J. Chem. Soc., Dalton Trans. 1977, 1010–1016.

    Google Scholar 

  121. H. Huber, G. A. Ozin, and W. J. Power, Synthesis and Characterization of Reactive Intermediates in the Palladium Atom-Ethylene System, (C2H4)nPd (where n = 1, 2, or 3), Inorg. Chem. 16, 979–983 (1977)

    CAS  Google Scholar 

  122. R. M. Atkins, R. Mackenzie, P. L. Timms, and T. W. Turney, The Preparation of Palladium-Olefin Complexes from Palladium Vapour, J. Chem. Soc., Chem. Comm. 1975, 764.

    Google Scholar 

  123. R. Mackenzie, and P. L. Timms, Reaction of Metal Atoms with Solutions; Preparation of Bis(cyclo-octa-1,5-diene)iron(0), J. Chem. Soc., Chem. Comm. 1974, 650–651.

    Google Scholar 

  124. P. S. Skell, E. M. Van Dam, and M. P. Silvon, Reactions of Tungsten and Molybdenum Atoms with 1,3-Butadiene. Tris(butadiene)tungsten and molybdenum, J. Am. Chem. Soc. 96, 626–627 (1974).

    CAS  Google Scholar 

  125. R. E. Moriarty, R. D. Ernst, and R. Bau, Structure of Tris(methyl vinyl ketone)tungsten, J. Chem. Soc., Chem. Comm. 1972, 1242–1243.

    Google Scholar 

  126. E. O. Fischer, J. Müller, and P. Kuzel, Eine neue Synthese von Dibenzolchrom, Rev. Chim., Acad. Rep. Populaire Roumaine 7, 827–834 (1962).

    CAS  Google Scholar 

  127. E. O. Fischer, and J. Müller, Metall-π-Komplexe des Rutheniums und Osmiums mit 6- und 8-gliedrigen cyclischen Oligoolefinen, Chem. Ber. 96, 3217–3222 (1963).

    CAS  Google Scholar 

  128. J. Müller, and E. O. Fischer, Neue π-Komplexe des Eisen(0) und Ruthenium(0) mit cyclischen Olefinen, J. Organomet. Chem. 5, 275–282 (1966) , and references cited therein.

    Google Scholar 

  129. J. Müller, and B. Mertschenk, Dicycloheptatrienvanadin(0), J. Organomet. Chem. 34, C41–C42 (1972).

    Google Scholar 

  130. M. H. L. Green, P. A. Newman, and J. A. Bandy, A Comparison of the Rates of Intramolecular Hydrogen Migration in the Molecules [Mo(η-C7H8)2]n+ to give [Mo(η-C7H7)(η-C7H9)]n+, n = 0 or 1: Crystal Structures of [Mo(η-C7H8)2], [Mo(η-C7H7)(η-C7H9)], and [Mo(η-C7H8)2]BF4, J. Chem. Soc., Dalton Trans. 1989, 331–343.

    Google Scholar 

  131. P. L. Timms, and T. W. Turney, Reactions of Transition-metal Vapours with Cycloheptatriene and Cyclooctatetraene, J. Chem. Soc., Dalton Trans. 1976, 2021–2025.

    Google Scholar 

  132. F. G. N. Cloke, M. L. H. Green, and P. J. Lennon, Synthesis of d2 η-Cycloheptatrienyl-η-cycloheptadienyl-zirconium and -hafnium Using the Metal Vapours, J. Organomet. Chem. 188, C25–C26 (1980).

    Google Scholar 

  133. J. C. Green, M. L. H. Green, and N. M. Walker, Synthesis, Crystal Structure and Reactions of Zerovalent 16-Electron Bis(η-cycloheptatriene)zirconium, J. Chem. Soc., Dalton Trans. 1991, 173–180.

    Google Scholar 

  134. K. Jonas, Dilithium-nickel-olefin Complexes. Novel Bimetallic Complexes From a Transition Metal and a Main Goup Metal, Angew. Chem. Int. Ed. Engl. 14, 752–753 (1975).

    Google Scholar 

  135. K. Jonas, Reactive Organometallic Compounds Obtained from Metallocenes and Related Compounds and Their Synthetic Applications, Angew. Chem. Int. Ed. Engl. 24, 295–311 (1985).

    Google Scholar 

  136. K. Jonas, R. Mynott, C. Krüger, J. C. Sekutowski, and Y.-H. Tsay, Bis(η-1,5-cyclooctadiene)cobalt Lithium, Angew. Chem. Int. Ed. Engl. 15, 767–768 (1976).

    Google Scholar 

  137. K. Jonas, and L. Schieferstein, Simple Approach to Lithium- and Zinc-metalized η-Cyclopentadienyliron-olefin Complexes, Angew. Chem. Int. Ed. Engl. 18, 549–550 (1979).

    Google Scholar 

  138. K. Jonas, L. Schieferstein, C. Krüger, and Y.-H. Tsay, Tetrakis(ethylene)irondilithium and Bis(μ4-1,5-cyclooctadiene)irondilithium, Angew. Chem. Int. Ed. Engl. 18, 550–551 (1979).

    Google Scholar 

  139. K. Jonas, and C. Krüger, Alkali Metal-Transition Metal π-Complexes, Angew. Chem. Int. Ed. Engl. 19, 520–538 (1980).

    Google Scholar 

  140. K. Jonas, Alkali Metal-Transition Metal π-Complexes, Adv. Organomet. Chem. 19, 97–122 (1981).

    CAS  Google Scholar 

  141. K. R. Pörschke, W. Kleimann, G. Wilke, K. H. Claus, and C. Krüger, Synthesis and Structure of [Na(tmeda)2]+[HNi2(C2H4)4] –, Angew. Chem. Int. Ed. Engl. 22, 991–992 (1983).

    Google Scholar 

  142. G. J. Leigh, A Celebration of Inorganic Lives: Interview of Joseph Chatt, Coord. Chem. Rev. 108, 4–25 (1991).

    Google Scholar 

  143. C. Eaborn, and G. J. Leigh, Joseph Chatt, C.B.E., Biogr. Mem. Fellows R. Soc. 42, 95–110 (1996).

    Google Scholar 

  144. G. Wilke, Contributions to Homogeneous Catalysis 1955–1980, J. Organomet. Chem. 200, 349–364 (1980).

    CAS  Google Scholar 

  145. P. M. Maitlis, and A. F. Hill, An Interview with Peter Maitlis and A Selection of Higlights from Gordon Stone’s Research by Anthony Hill, Inorg. Chim. Acta 358, 1345–1357 (2005).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Werner, H. (2009). The Binding of Ethene and Its Congeners: Prototypical Metal π-Complexes. In: Landmarks in Organo-Transition Metal Chemistry. Profiles in Inorganic Chemistry. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09848-7_7

Download citation

Publish with us

Policies and ethics