Skip to main content

Transition Metal Carbonyls: From Small Molecules to Giant Clusters

  • Chapter
  • First Online:
  • 1189 Accesses

Part of the book series: Profiles in Inorganic Chemistry ((PIIC))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Tc2(CO)10 was independently prepared by Herb Kaesz and his group.

References

  1. A. Werner, Neuere Anschauungen auf dem Gebiete der Anorganischen Chemie, 4. Aufl. (Vieweg & Sohn, Braunschweig, 1920, p. 192).

    Google Scholar 

  2. R. Anschütz, Chemie der Kohlenstoffverbindungen oder Organische Chemie, 12. Aufl. (Akademische Verlagsgesellschaft, Leipzig, 1928, Vol. I, p. 319).

    Google Scholar 

  3. E. Krause and A. von Grosse, Die Chemie der metall-organischen Verbindungen (Gebrüder Bornträger, Berlin, 1937, p. 1).

    Google Scholar 

  4. L. Mond, and F. Quincke, Note on a Volatile Compound of Iron with Carbonic Oxide, J. Chem. Soc. 1891, 604–607 (Ber. dtsch. chem. Ges. 24, 2248–2250 (1891)).

    Google Scholar 

  5. J. Dewar, and H. O. Jones, The Physical and Chemical Properties of Iron Carbonyl, Proc. Roy. Soc. A76, 558–577 (1905).

    Google Scholar 

  6. J. Dewar, and H. O. Jones, On a New Iron Carbonyl, and on the Action of Light and of Heat on the Iron Carbonyls, Proc. Roy. Soc. A79, 66–80 (1907).

    Google Scholar 

  7. W. Hieber, and E. Becker, Über Eisentetracarbonyl und sein chemisches Verhalten, Ber. dtsch. chem. Ges. 63, 1405–1417 (1930).

    Google Scholar 

  8. L. Mond, The History of my Process of Nickel Extraction, J. Soc. Chem. Ind. 14, 945–946 (1895).

    Google Scholar 

  9. E. Abel, Ludwig Mond – Father of Metal Carbonyls – and so Much More, J. Organomet. Chem. 383, 11–20 (1990).

    CAS  Google Scholar 

  10. R. L. Mond, H. Hirtz, and M. D. Cowap, Some New Metallic Carbonyls, J. Chem. Soc. 97, 798–810 (1910).

    CAS  Google Scholar 

  11. A. Job, and A. Cassal, Le chrome-carbonyle, Bull. Soc. Chim. Fr. 41, 1041–1046 (1927).

    CAS  Google Scholar 

  12. A. Job, and J. Rouvillois, Préparation d’un tungstène-carbonyle par l’intermédiaire d’un magnésien, Compt. rend. 187, 564–565 (1928).

    CAS  Google Scholar 

  13. W. Herwig, and H. Zeiss, The Preparation and Reactions of Triphenylchromium(III), J. Am. Chem. Soc. 81, 4798–4801 (1959).

    CAS  Google Scholar 

  14. W. Manchot, and W. J. Manchot, Darstellung von Rutheniumcarbonylen und –nitrosylen, Z. anorg. allg. Chem. 226, 385–415 (1936).

    CAS  Google Scholar 

  15. W. E. Trout jr., The Metal Carbonyls. I. History. II. Preparation, J. Chem. Educ. 14, 453–459 (1937).

    CAS  Google Scholar 

  16. E. Harbeck, and G. Lunge, Über die Einwirkung von Kohlenoxyd auf Platin und Palladium, Z. anorg. allg. Chem. 16, 50–66 (1898).

    CAS  Google Scholar 

  17. W. E. Trout jr., The Metal Carbonyls. III. Constitution. IV. Properties, J. Chem. Educ. 14, 575–581 (1937).

    CAS  Google Scholar 

  18. R. L. Mond, Metal Carbonyls, J. Soc. Chem. Ind. 49, 271–278 (1930).

    CAS  Google Scholar 

  19. H. Reihlen, A. von Friedolsheim, and W. Oswald, Über Stickoxyd- und Kohlenoxydverbindungen des scheinbar einwertigen Eisens und Nickels, Liebigs Ann. Chem. 465, 72–96 (1928).

    CAS  Google Scholar 

  20. H. Reihlen, A. Gruhl, and G. von Hessling, Über den photochemischen und oxydativen Abbau von Carbonylen, Liebigs Ann. Chem. 472, 268–287 (1929).

    CAS  Google Scholar 

  21. A. A. Blanchard, and W. L. Gilliland, The Constitution of Nickel Carbonyl and the Nature of Secondary Valence, J. Am. Chem. Soc. 48, 872–882 (1926).

    CAS  Google Scholar 

  22. C. Brill, Röntgenographische Untersuchung des Eisennonacarbonyls Fe2(CO)9, Z. Krist. 65, 85–93 (1927).

    CAS  Google Scholar 

  23. N. V. Sidgwick, and R. W. Bailey, Structures of the Metallic Carbonyl and Nitrosyl Compounds, Proc. Roy. Soc. A144, 521–537 (1934).

    Google Scholar 

  24. M. Schneider, and E. Weiss, Kristall- und Molekülstruktur von Tetrakis(tetrahydrofuran)vanadium(II)-bis(hexacarbonylvanadat(–I), ein Beispiel für eine lineare Carbonylbrücke, J. Organomet. Chem. 121, 365–371 (1976).

    CAS  Google Scholar 

  25. W. Hieber, Metal Carbonyls, Forty Years of Research, Adv. Organomet. Chem. 8, 1–28 (1970).

    CAS  Google Scholar 

  26. W. Hieber, and F. Sonnekalb, Reaktionen und Derivate des Eisencarbonyls, Ber. dtsch. chem. Ges. 61, 558–565 (1928).

    Google Scholar 

  27. F. Feigl, and P. Krumholz, Über Salze des Eisencarbonylwasserstoffs, Z. anorg. allg. Chem. 215, 242–248 (1933).

    CAS  Google Scholar 

  28. W. Hieber, J. Sedlmeier, and R. Werner, Neuere Anschauungen über Entstehung und Konstitution Äthylendiamin-haltiger Eisencarbonyle, Chem. Ber. 90, 278–286 (1957).

    CAS  Google Scholar 

  29. W. Hieber, and H. Schulten, Darstellung und Eigenschaften des freien Kobaltcarbonylwasserstoffs, Z. anorg. allg. Chem. 232, 29–38 (1937).

    CAS  Google Scholar 

  30. W. Hieber, and F. Leutert, Die Basenreaktion des Eisenpentacarbonyls und die Bildung des Eisencarbonylwasserstoffs, Z. anorg. allg. Chem. 204, 145–164 (1932).

    CAS  Google Scholar 

  31. N. V. Sidgwick, The Electronic Theory of Valence (Oxford University Press, London-New York, 1927).

    Google Scholar 

  32. M. P. Schubert, The Action of Carbon Monoxide on Iron and Cobalt Complexes of Cysteine, J. Am. Chem. Soc. 55, 4563–4570 (1933).

    CAS  Google Scholar 

  33. W. Hieber, F. Mühlbauer, and E. A. Ehmann, Derivate des Kobalt- und Nickelcarbonyls, Ber. dtsch. chem. Ges. 65, 1090–1101 (1932).

    Google Scholar 

  34. F. Hein, Chemische Koordinationslehre (S. Hirzel Verlag, Leipzig, 1950, p. 339).

    Google Scholar 

  35. P. B. Armentrout, and L. S. Sunderlin, Gas-Phase Organometallic Chemistry of Transition Metal Hydrides, in: Transition Metal Hydrides (Ed. A. Dedieu, VCH Publishers, New York, 1992, Chap. 1.4).

    Google Scholar 

  36. W. Hieber, W. Beck, and G. Braun, Anionische Kohlenoxyd-Komplexe, Angew. Chem. 72, 795–801 (1960).

    CAS  Google Scholar 

  37. T. Kruck, M. Höfler, and M. Noack, Reaktionsweisen von Rhenium(I)-Kohlenoxidkomplexen und neue Anschauungen über den Mechanismus der Basenreaktion von Metallcarbonylen, Chem. Ber. 99, 1153–1167 (1966).

    CAS  Google Scholar 

  38. W. Hieber, O. Vohler, and G. Braun, Über Methylkobalttetracarbonyl, Z. Naturforsch., Part B, 13, 192–193 (1958).

    Google Scholar 

  39. P. M. Treichel, and F. G. A. Stone, Fluorocarbon Derivatives of Metals, Adv. Organomet. Chem. 1, 143–220 (1964).

    CAS  Google Scholar 

  40. F. Hein, and H. Pobloth, Umsetzungen von Metallorganoverbindungen mit Eisenpentacarbonyl und Eisencarbonylwasserstoff, Z. anorg. allg. Chem. 248, 84–104 (1941).

    CAS  Google Scholar 

  41. F. Hein, and E. Heuser, Über Organoblei-Eisentetracarbonyle, Z. anorg. allg. Chem. 254, 138–150 (1947).

    CAS  Google Scholar 

  42. W. Hieber, and R. Breu, Über Organometall-Kobaltcarbonyle, Chem. Ber. 90, 1270–1274 (1957).

    CAS  Google Scholar 

  43. H. Hock, and H. Stuhlmann, Über die Einwirkung von Quecksilbersalzen auf Eisenpentacarbonyl, Ber. dtsch. chem. Ges. 61, 2097–2101 (1928).

    Google Scholar 

  44. R. D. Ernst, T. J. Marks, and J. A. Ibers, Metal-Metal Bond Cleavage Reactions. The Crystallization and Solid State Structural Characterization of Cadmium Tetracarbonyliron, CdFe(CO)4, J. Am. Chem. Soc. 99, 2090–2098 (1977).

    CAS  Google Scholar 

  45. W. Hieber, and G. Wagner, Über “Manganpentacarbonylwasserstoff”, HMn(CO)5, Z. Naturforsch., Part B, 13, 339–347 (1958).

    Google Scholar 

  46. W. Hieber, and G. Braun, “Rheniumcarbonylwasserstoff” und Methylpentacarbonylrhenium, Z. Naturforsch., Part B, 14, 132–133 (1959).

    Google Scholar 

  47. W. Hieber, E. Winter, and E. Schubert, Reaktionen des Vanadinhexacarbonyls mit verschiedenartigen Basen und die Säurefunktion von Vanadincarbonylwasserstoff-Verbindungen, Chem. Ber. 95, 3070–3076 (1962).

    CAS  Google Scholar 

  48. W. Hieber, and H. Fuchs, Über Rheniumpentacarbonyl, Z. anorg. allg. Chem. 248, 256–268 (1941).

    CAS  Google Scholar 

  49. F. Calderazzo, and F. L’Eplattenier, The Pentacarbonyls of Ruthenium and Osmium. I. Infrared Spectra and Reactivity, Inorg. Chem. 6, 1220–1224 (1967).

    Google Scholar 

  50. H. Lagally, Das Rhodium im System der Metallcarbonyle, Z. anorg. allg. Chem. 251, 96–113 (1943).

    Google Scholar 

  51. E. R. Corey, L. F. Dahl, and W. Beck, Rh6(CO)16 and its Identity with Previously Reported Rh4(CO)11, J. Am. Chem. Soc. 85, 1202–1203 (1963).

    CAS  Google Scholar 

  52. W. Schneider, Einführung in die Koordinationschemie (Springer Verlag, Berlin-Heidelberg-New York, 1968).

    Google Scholar 

  53. L. Vaska, Reversible Activation of Covalent Molecules by Transition Metal Complexes. The Role of the Covalent Molecule, Acc. Chem. Res. 1, 335–344 (1968).

    CAS  Google Scholar 

  54. J. P. Collman, L. S. Hegedus, J. R. Norton, and R. G. Finke, Principles and Applications of Organotransition Metal Chemistry (University Science Books, Mill Valley, California, 1987, Chap. 5).

    Google Scholar 

  55. W. Hieber, and C. Herget, Technetiumcarbonyl, Angew. Chem. 73, 579–580 (1961).

    CAS  Google Scholar 

  56. J. C. Hileman, D. K. Huggins, and H. D. Kaesz, Technetium Carbonyl, J. Am. Chem. Soc. 83, 2953–2954 (1961).

    CAS  Google Scholar 

  57. E. O. Brimm, M. A. Lynch, and W. J. Sesny, Preparation and Properties of Manganese Carbonyl, J. Am. Chem. Soc. 76, 3831–3835 (1954).

    CAS  Google Scholar 

  58. F. Calderazzo, The Manganese-Catalyzed Carbonylation of Amines, Inorg. Chem. 4, 293–296 (1965).

    CAS  Google Scholar 

  59. F. Calderazzo, R. Ercoli, and G. Natta, Metal Carbonyls: Preparation, Structure, and Properties, in: Organic Synthesis via Metal Carbonyls (Eds. I. Wender and P. Pino, Wiley Interscience, New York, 1968, Vol. I, p. 27).

    Google Scholar 

  60. L. F. Dahl, E. Ishishi, and R. E. Rundle, Structures of Mn2(CO)10 and Re2(CO)10, J. Chem. Phys. 26, 1750–1751 (1957).

    CAS  Google Scholar 

  61. L. F. Dahl, and R. E. Rundle, The Crystal Structure of Dimanganese Decacarbonyl, Mn2(CO)10, Acta Cryst. 16, 419–426 (1963).

    CAS  Google Scholar 

  62. C. M. Lukehart, Fundamental Transition Metal Organometallic Chemistry (Brooks/Cole Publishing Company, Monterey, 1985, p. 25).

    Google Scholar 

  63. F. A. Cotton, and M. H. Chisholm, Bonds between Metal Atoms. A New Mode of Transition Metal Chemistry, Chem. Eng. News 60, 40–54 (1982).

    CAS  Google Scholar 

  64. F. A. Cotton, Metal Carbonyls: Some New Observations in an Old Field, Progr. Inorg. Chem. 21, 1–28 (1976).

    CAS  Google Scholar 

  65. D. Braga, F. Grepioni, L. J. Farrugia, and B. F. G. Johnson, Effect of Temperature on the Solid-state Molecular Structure of [Fe3(CO)12], J. Chem. Soc., Dalton Trans. 1994, 2911–2918.

    Google Scholar 

  66. S. J. Lippard, Frank Albert Cotton (1930–2007), Nature 446, 626 (2007).

    CAS  Google Scholar 

  67. R. L. Mond, and A. E. Wallis, The Action of Nitric Oxide on the Metallic Carbonyls, J. Chem. Soc. 121, 32–35 (1922).

    CAS  Google Scholar 

  68. J. S. Anderson, Über ein flüchtiges Eisen-Nitrosocarbonyl Fe(CO)2(NO)2, Z. anorg. allg. Chem. 208, 238–248 (1932).

    CAS  Google Scholar 

  69. G. B. Richter-Addo, and P. Legzdins, Metal Nitrosyls (Oxford University Press, New York-Oxford, 1992, p. 81).

    Google Scholar 

  70. F. Seel, Struktur- und Valenztheorie anorganischer Stickoxydkomplexe, Z. anorg. allg. Chem. 249, 308–324 (1942).

    Google Scholar 

  71. C. G. Barraclough, and J. Lewis, Trinitrosylcarbonylmanganese, J. Chem. Soc. 1960, 4842–4846.

    Google Scholar 

  72. M. Herberhold, and A. Razavi, Tetranitrosylchromium [Cr(NO)4], Angew. Chem. Int. Ed. Engl. 11, 1092–1094 (1972).

    CAS  Google Scholar 

  73. P. M. Treichel, E. Pitcher, R. B. King, and F. G. A. Stone, Tetracarbonylnitrosylmanganese, J. Am. Chem. Soc. 83, 2593–2594 (1961).

    CAS  Google Scholar 

  74. H. Brunner, Optical Activity at an Asymmetric Manganese Atom, Angew. Chem. Int. Ed. Engl. 8, 382–383 (1969).

    CAS  Google Scholar 

  75. H. Brunner, Optical Activity from Asymmetric Transition Metal Atoms, Angew. Chem. Int. Ed. Engl. 10, 249–260 (1971).

    CAS  Google Scholar 

  76. H. M. Powell, and R. V. G. Ewens, The Crystal Structure of Iron Enneacarbonyl, J. Chem. Soc. 1939, 286–292.

    Google Scholar 

  77. F. A. Cotton, and J. M. Troup, Accurate Determination of a Classic Structure in the Metal Carbonyl Field: Nonacarbonyldi-iron, J. Chem. Soc., Dalton Trans. 1974, 800–802.

    Google Scholar 

  78. E. R. Davidson, K. L. Kunze, F. B. C. Machado, and S. J. Chakravorty, The Transition Metal–Carbon Bond, Acc. Chem. Res. 26, 628–635 (1993).

    CAS  Google Scholar 

  79. H. Behrens, Four Decades of Metal Carbonyl Chemistry in Liquid Ammonia: Aspects and Prospects, Adv. Organomet. Chem. 18, 1–53 (1980).

    CAS  Google Scholar 

  80. J. E. Ellis, Highly Reduced Metal Carbonyl Anions: Synthesis, Characterization, and Chemical Properties, Adv. Organomet. Chem. 31, 1–51 (1990).

    CAS  Google Scholar 

  81. J. E. Ellis, and R. A. Faltynek, The Tetracarbonyl Trianions of Manganese and Rhenium, [M(CO)4]3–, J. Chem. Soc., Chem. Comm. 1975, 966–967.

    Google Scholar 

  82. J. E. Ellis, Metal Carbonyl Anions: From [Fe(CO)4]2– to [Hf(CO)6]2– and Beyond, Organometallics 22, 3322–3338 (2003).

    CAS  Google Scholar 

  83. W. Beck, Highly-Reduced Metal Carbonyls, Angew. Chem. Int. Ed. Engl. 30, 168–169 (1991).

    Google Scholar 

  84. J. Parry, E. Carmona, S. Coles, and M. Hursthouse, Synthesis and Single Crystal X-ray Diffraction Study on the First Isolable Carbonyl Complex of an Actinide, (C5Me4H)3U(CO), J. Am. Chem. Soc. 117, 2649–2650 (1995).

    CAS  Google Scholar 

  85. H. W. Sternberg, R. A. Friedel, S. L. Shufler, and I. Wender, The Dissociation of Iron Pentacarbonyl in Certain Amines, J. Am. Chem. Soc. 77, 2675–2677 (1955).

    CAS  Google Scholar 

  86. A. Sacco, and M. Freni, Salts of Bis(triphenylphosphine)tricarbonylcobalt(I), Ann. Chim. (Rome) 48, 218–224 (1958).

    CAS  Google Scholar 

  87. W. Hieber, and W. Freyer, Über triphenylphosphinhaltige Kobaltcarbonyle, Chem. Ber. 91, 1230–1234 (1958).

    CAS  Google Scholar 

  88. E. O. Fischer, and K. Öfele, Mangan(I)-pentacarbonyl-äthylen-Kation, Angew. Chem. 73, 581 (1961).

    CAS  Google Scholar 

  89. W. Hieber, and T. Kruck, Über kationische Kohlenoxyd-Komplexe, I. Hexacarbonylrhenium(I)-Salze, Z. Naturforsch., Part B, 16, 709–713 (1961).

    Google Scholar 

  90. Z. Iqbal, and T. C. Waddington, Liquid Hydrogen Chloride as an Ionizing Solvent. Protonation and Oxidation Reactions of Pentacarbonyliron, J. Chem. Soc. A, 1968, 2958–2961.

    Google Scholar 

  91. H. Willner, and F. Aubke, Reaction of Carbon Monoxide in the Superacid HSO3F-Au(SO3F)3 and the Gold(I) Bis(carbonyl) Cation [Au(CO)2]+. Isolation and Characterization of Gold(I) Carbonyl Fluorosulfate, Au(CO)SO3F, Inorg. Chem. 29, 2195–2200 (1990).

    CAS  Google Scholar 

  92. H. Willner, J. Schaebs, G. Hwang, F. Mistry, R. Jones, J. Trotter, and F. Aubke, Bis(carbonyl)gold(I) Undecafluorodiantimonate(V), [Au(CO)2][Sb2F11]: Synthesis, Vibrational and 13C NMR Study, and the Molecular Structure of Bis(acetonitrile)gold(I) Hexafluoroantimonate(V), [Au(NCCH3)2][SbF6], J. Am. Chem. Soc. 114, 8972–8980 (1992).

    CAS  Google Scholar 

  93. P. K. Hurlburt, J. J. Rack, S. F. Dec, O. P. Anderson, and S. H. Strauss, [Ag(CO)2][B(OTeF5)4]: The First Structurally Characterized M(CO)2 Complex, Inorg. Chem. 32, 373–374 (1993).

    CAS  Google Scholar 

  94. S. M. Ivanova, S. V. Ivanov, S. M. Miller, O. P. Anderson, K. A. Solntsev, and S. H. Strauss, Mono-, Di-, Tri-, and Tetracarbonyls of Copper(I), Including the Structure of Cu(CO)2(1-Bn-CB11F11) and [Cu(CO)4][1-Et-CB11F11], Inorg. Chem. 38, 3756–3757 (1999).

    CAS  Google Scholar 

  95. H. Willner, and F. Aubke, Homoleptic Metal Carbonyl Cations of the Electron-rich Metals: Their Generation in Superacidic Media Together with Their Spectroscopic and Structural Characterization, Angew. Chem. Int. Ed. Engl. 36, 2402–2425 (1997).

    CAS  Google Scholar 

  96. H. Willner, and F. Aubke, σ-Bonded Metal Carbonyl Cations and Their Derivatives: Syntheses and Structural, Spectroscopic, and Bonding Principles, Organometallics 22, 3612–3633 (2003).

    CAS  Google Scholar 

  97. B. von Ahsen, M. Berkei, G. Henkel, H. Willner, and F. Aubke, The Synthesis, Vibrational Spectra, and Molecular Structure of [Ir(CO)6][SbF6]3·4HF – The First Structurally Characterized Salt with a Tripositive, Homoleptic Metal Carbonyl Cation and the First Example of a Tetrahedral Hydrogen-Bonded (HF)4 Cluster, J. Am. Chem. Soc. 124, 8371–8379 (2002).

    Google Scholar 

  98. S. H. Strauss, Copper(I) and Silver(I) Carbonyls. To Be or not to Be Classical, J. Chem. Soc., Dalton Trans. 2000, 1–6.

    Google Scholar 

  99. Q. Xu, Metal Carbonyl Cations: Generation, Characterization and Catalytic Application, J. Organomet. Chem. 231, 83–108 (2002).

    CAS  Google Scholar 

  100. W. Strohmeier, and K. Gerlach, Die Photochemische Darstellung von Pentacarbonyl-pyridin-chrom(0) und Pentacarbonyl-anilin-chrom(0), Z. Naturforsch., Part B, 15, 413–414 (1960).

    Google Scholar 

  101. I. W. Stolz, G. R. Dobson, and R. K. Sheline, The Infrared Spectrum and Evidence for the Structure of a New Metal Carbonyl, J. Am. Chem. Soc. 84, 3589–3590 (1962).

    CAS  Google Scholar 

  102. G. O. Schenck, E. Koerner von Gustorf, and M.-J. Jun, Photochemische Umsetzungen von Eisenpentacarbonyl mit Philodienen, Tetrahedron Lett. 1962, 1059–1064.

    Google Scholar 

  103. W. Strohmeier, Photochemical Substitution of Metal Carbonyls and Their Derivatives, Angew. Chem. Int. Ed. Engl. 3, 730–738 (1964).

    Google Scholar 

  104. E. A. Koerner von Gustorf, and F.-W. Grevels, Photochemistry of Metal Carbonyls, Metallocenes, and Olefin Complexes, Fortschr. Chem. Forsch. 13, 366–450 (1969).

    Google Scholar 

  105. M. S. Wrighton, The Photochemistry of Metal Carbonyls, Chem. Rev. 74, 401–430 (1974).

    CAS  Google Scholar 

  106. J. K. Burdett, Matrix Isolation Studies on Transition Metal Carbonyls and Related Species, Coord. Chem. Rev. 27, 1–58 (1978).

    CAS  Google Scholar 

  107. R. B. Hitam, K. A. Mahmoud, and A. J. Rest, Matrix Isolation Studies of Organometallic Intermediates, Coord. Chem. Rev. 55, 1–29 (1984).

    CAS  Google Scholar 

  108. M. Poliakoff, and E. Weitz, Detection of Transient Organometallic Species by Fast Time-Resolved IR Spectroscopy, Adv. Organomet. Chem. 25, 277–316 (1986).

    CAS  Google Scholar 

  109. R. N. Perutz, Organometallic Intermediates: Ultimate Reagents, Chem. Soc. Rev. 22, 361–369 (1993).

    CAS  Google Scholar 

  110. M. Poliakoff, and J. J. Turner, Structure and Reactions of Matrix-isolated Tetracarbonyliron(0), J. Chem. Soc., Dalton Trans. 1974, 2276–2285.

    Google Scholar 

  111. M. Poliakoff, Fe(CO)4, Chem. Soc. Rev. 7, 527–540 (1978).

    CAS  Google Scholar 

  112. M. Poliakoff, and E. Weitz, Shedding Light on Organometallic Reactions: The Characterization of Fe(CO)4, a Prototypical Reaction Intermediate, Acc. Chem. Res. 20, 408–414 (1987).

    CAS  Google Scholar 

  113. M. Poliakoff, and J. J. Turner, The Structure of [Fe(CO)4] – An Important New Chapter in a Long-Running Story, Angew. Chem. Int. Ed. 2001, 2809–2812 (2001).

    Google Scholar 

  114. M. A. Graham, M. Poliakoff, and J. J. Turner, The Pentacarbonyls of Chromium, Molybdenum, and Tungsten, J. Chem. Soc. A 1971, 2939–2948 (Part I).

    Google Scholar 

  115. R. N. Perutz, and J. J. Turner, Infrared Spectra and Structures of 13CO-Enriched Hexacarbonyls and Pentacarbonyls of Chromium, Molybdenum, and Tungsten, Inorg. Chem. 14, 262–270 (1975) (Part II).

    CAS  Google Scholar 

  116. R. N. Perutz, and J. J. Turner, Interaction of the Pentacarbonyls with Noble Gases and Other Matrices, J. Am. Chem. Soc. 97, 4791–4800 (1975) (Part III).

    CAS  Google Scholar 

  117. M. B. Simpson, M. Poliakoff, J. J. Turner, W. B. Maier II, and J. G. McLaughlin, [Cr(CO)5Xe] in Solution; the First Spectroscopic Evidence, J. Chem. Soc., Chem. Comm. 1983, 1355–1357.

    Google Scholar 

  118. J. R. Wells, and E. Weitz, Rare Gas-Metal Carbonyl Complexes: Bonding of Rare Gas Atoms to the Group VI Pentacarbonyls, J. Am. Chem. Soc. 114, 2783–2787 (1992).

    CAS  Google Scholar 

  119. J. H. Darling, and J. S. Ogden, Infrared Spectroscopic Evidence for Palladium Tetracarbonyl, Inorg. Chem. 11, 666–667 (1972).

    CAS  Google Scholar 

  120. J. H. Darling, and J. S. Ogden, Spectroscopic Studies on Matrix-isolated Metal Carbonyls. Infrared Spectra and Structures of Pd(CO)4, Pd(CO)3, Pd(CO)2, and PdCO, J. Chem. Soc., Dalton Trans. 1973, 1079–1085.

    Google Scholar 

  121. E. P. Kündig, M. Moskovits, and G. A. Ozin, Intermediate Binary Carbonyls of Palladium Pd(CO)n where n = 1–3; Preparation, Identification, and Diffusion Kinetics by Matrix Isolation Infrared Spectroscopy, Canad. J. Chem. 50, 3587–3593 (1972).

    Google Scholar 

  122. E. P. Kündig, D. McIntosh, M. Moskovits, and G. A. Ozin, Binary Carbonyls of Platinum, Pt(CO)n (Where n = 1–4). A Comparative Study of the Chemical and Physical Properties of M(CO)n (Where M = Ni, Pd, or Pt; n = 1–4), J. Am. Chem. Soc. 95, 7234–7241 (1973).

    Google Scholar 

  123. T. C. DeVore, and H. F. Franzen, Synthesis of Dodecacarbonyldivanadium in Low-Temperature Matrices, Inorg. Chem. 15, 1318–1321 (1976).

    CAS  Google Scholar 

  124. T. A. Ford, H. Huber, W. Klotzbücher, M. Moskovits, and G. A. Ozin, Direct Synthesis with Vanadium Atoms. Synthesis of Hexacarbonylvanadium and Dodecacarbonyldivanadium, Inorg. Chem. 15, 1666–1669 (1976).

    CAS  Google Scholar 

  125. R. Busby, W. Klotzbücher, and G. A. Ozin, Titanium Hexacarbonyl, Ti(CO)6, and Titanium Hexadinitrogen, Ti(N2)6. Synthesis Using Titanium Atoms and Characterization by Matrix Infrared and Ultraviolet-Visible Spectroscopy, Inorg. Chem. 16, 822–828 (1977).

    CAS  Google Scholar 

  126. A. J. L. Hanlan, and G. A. Ozin, Iridium Atom Chemistry: A Reappraisal of the Matrix Synthesis of Diiridium Octacarbonyl, Ir2(CO)8, J. Organomet. Chem. 179, 57–64 (1979).

    CAS  Google Scholar 

  127. D. McIntosh, and G. A. Ozin, Synthesis of Binary Gold Carbonyls, Au(CO)n (n = 1 or 2). Spectroscopic Evidence for Isocarbonyl(carbonyl)gold, a Linkage Isomer of Bis(carbonyl)gold, Inorg. Chem. 16, 51–59 (1977).

    CAS  Google Scholar 

  128. J. S. Ogden, Infrared Spectroscopic Evidence for Copper and Silver Carbonyls, Chem. Comm. 1971, 978–979.

    Google Scholar 

  129. H. Huber, E. P. Kündig, M. Moskovits, and G. A. Ozin, Binary Copper Carbonyls. Synthesis and Characterization of Cu(CO)3, Cu(CO)2, CuCO, and Cu2(CO)6, J. Am. Chem. Soc. 97, 2097–2106 (1975).

    CAS  Google Scholar 

  130. D. McIntosh, and G. A. Ozin, Synthesis Using Metal Vapors. Silver Carbonyls. Matrix Infrared, Ultraviolet-Visible, and Electron Spin Resonance Spactra, Structures, and Bonding of Ag(CO)3, Ag(CO)2, AgCO, and Ag2(CO)6, J. Am. Chem. Soc. 98, 3167–3175 (1976).

    CAS  Google Scholar 

  131. J. C. Bernier, and O. Kahn, Magnetic Behaviour of Vanadium Hexacarbonyl, Chem. Phys. Lett. 19, 414–417 (1973).

    CAS  Google Scholar 

  132. R. Ercoli, P. Chini, and M. Massi-Mauri, Sintesi del tetracobalto dodecacarbonile, per riduzione del cobalto cationico con idrogeno e dicobalto ottacarbonile, Chim. Ind. (Milan) 41, 132–135 (1959).

    CAS  Google Scholar 

  133. P. Chini, L. Colli, and M. Peraldo, Preparazione a proprietà dell’idrocarbonile HFeCo3(CO)12 e di alcuni composti derivati dall’anione [FeCo3(CO)12], Gazz. Chim. Ital. 90, 1005–1020 (1960).

    CAS  Google Scholar 

  134. P. Chini, A New Cluster Carbonylcobaltate, Chem. Comm. 1967, 29.

    Google Scholar 

  135. P. Chini, Hexacobalt Hexadecacarbonyl and its Derivatives, Chem. Comm. 1967, 440–441.

    Google Scholar 

  136. P. Chini, The Closed Metal Carbonyl Clusters, Inorg. Chim. Acta Rev. 2, 31–51 (1968).

    CAS  Google Scholar 

  137. P. Chini, G. Longoni, and V. G. Albano, High Nuclearity Metal Carbonyl Clusters, Adv. Organomet. Chem. 14, 285–344 (1976).

    CAS  Google Scholar 

  138. P. Chini, Synthesis of Large Anionic Carbonyl Clusters as Models for Small Metallic Crystallites, Gazz. Chim. Ital. 109, 225–240 (1979).

    CAS  Google Scholar 

  139. P. Chini, Large Metal Carbonyl Clusters (LMCC), J. Organomet. Chem. 200, 37–61 (1980).

    CAS  Google Scholar 

  140. M. D. Vargas, and J. N. Nicholls, High-Nuclearity Carbonyl Clusters: Their Synthesis and Reactivity, Adv. Inorg. Chem. Radiochem. 30, 123–222 (1986).

    CAS  Google Scholar 

  141. S. Martinengo, B. T. Heaton, R. J. Goodfellow, and P. Chini, Hydrogen and Carbonyl Scrambling in [Rh13(CO)24H5–n]n– (n = 2 and 3): A Unique Example of Hydrogen Tunneling, J. Chem. Soc., Chem. Comm. 1977, 39–40.

    Google Scholar 

  142. B. F. G. Johnson, and A. Rodgers, Polyhedral Rearrangements and Fragmentation Reactions in Cluster Complexes, in: The Chemistry of Metal Cluster Complexes (Eds. D.F. Shriver, H. D. Kaesz, and R. D. Adams, VCH Publishers, New York, 1990, Chap. 6).

    Google Scholar 

  143. C. E. Housecroft, Metal–Metal Bonded Carbonyl Dimers and Clusters (Oxford University Press, Oxford-New York-Tokyo, 1996, pp. 22 and 23).

    Google Scholar 

  144. J. C. Calabrese, L. F. Dahl, P. Chini, G. Longoni, and S. Martinengo, Synthesis and Structural Characterization of Platinum Carbonyl Cluster Dianions, [Pt3(CO)32-CO)3]n 2– (n = 2, 3, 4, 5). A New Series of Inorganic Oligomers, J. Am. Chem. Soc. 96, 2614–2616 (1974).

    CAS  Google Scholar 

  145. G. Longoni, and S. Martinengo, Synthesis and Chemical Characterization of Platinum Carbonyl Dianions, [Pt3(CO)32-CO)3]n 2– (n = ˜10, 6, 5, 4, 3, 2, 1). A New Series of Inorganic Oligomers, J. Am. Chem. Soc. 98, 7225–7231 (1976).

    CAS  Google Scholar 

  146. C. Brown, B. T. Heaton, A. D. C. Towl, P. Chini, A. Fumagalli, and G. Longoni, Stereochemical Non-rigidity of a Metal Polyhedron; Carbon-13 and Platinum-195 Fourier Transform Nuclear Magnetic Resonance Spectra of [Ptn(CO)2n]2– (n = 3, 6, 9, 12 or 15), J. Organomet. Chem. 181, 233–254 (1979).

    CAS  Google Scholar 

  147. V. G. Albano, A. Ceriotti, P. Chini, G. Ciani, S. Martinengo, and W. M. Anker, Hexagonal Close Packing of Metal Atoms in the New Polynuclear Anions [Rh13(CO)24H5–n]n– (n = 2 or 3); X-Ray Structure of [(Ph3P)2N]2[Rh13(CO)24H3], J. Chem. Soc., Chem. Comm. 1975, 859–860.

    Google Scholar 

  148. J. C. Calabrese, L. F. Dahl, A. Cavalieri, P. Chini, G. Longoni, and S. Martinengo, Synthesis and Structure of a Hexanuclear Nickel Carbonyl Dianion, [Ni3(CO)32-CO)3]2 2–, and Comparison with the [Pt3(CO)32-CO)3]2 2– Dianion. An Unprecedented Case of a Metal Cluster System Possessing Different Metal Architectures for Congener Transition Metals, J. Am. Chem. Soc. 96, 2616–2618 (1974).

    CAS  Google Scholar 

  149. G. Longoni, P. Chini, L. D. Lower, and L. F. Dahl, Synthesis and Structural Characterization of a New Type of Homonuclear Metal Carbonyl, [Ni5(CO)92-CO)3]2–. A Trigonal Bipyramidal Metal Cluster System, J. Am. Chem. Soc. 97, 5034–5036 (1975).

    CAS  Google Scholar 

  150. J. K. Ruff, R. P.White, and L. F. Dahl, Preparation, Structure, and Bonding of a New Type of Metal Cluster System, [M2Ni3(CO)16]n (M = Cr, Mo, W; n = –2): A Noncorformist to the Nobel Gas Metal Family, J. Am. Chem. Soc. 93, 2159–2176 (1971).

    Google Scholar 

  151. S. Martinengo, G. Ciani, A. Sironi, and P. Chini, Analogues of Metallic Lattices in Rhodium Carbonyl Cluster Chemistry. Synthesis and X-ray Structure of the [Rh15(μ-CO)14(CO)13]3– and [Rh14(μ-CO)16(CO)9]4– Anions Showing a Stepwise Hexagonal Close-Packed/Body-Centered Cubic Interconversion, J. Am. Chem. Soc. 100, 7096–7098 (1979).

    Google Scholar 

  152. D. M. Washecheck, E. J. Wucherer, L. F. Dahl, A. Ceriotti, G. Longoni, M. Manassero, M. Sansoni, and P. Chini, Synthesis, Structure, and Stereochemical Implications of the [Pt19(CO)122-CO)10]4– Tetraanion: A Bicapped Triple-Decker All-Metal Sandwich of Idealized Fivefold (D 5 h ) Geometry, J. Am. Chem. Soc. 101, 6110–6112 (1979).

    CAS  Google Scholar 

  153. S. Martinengo, G. Ciani, and A. Sironi, Synthesis and X-ray Structural Characterization of the [Rh223-CO)7(μ-CO)18(CO)12]4– Anion Containing a Large Close-Packed Cluster with an ABAC Sequence of Compact Layers, J. Am. Chem. Soc. 102, 7564–7565 (1980).

    CAS  Google Scholar 

  154. G. Ciani, A. Magni, A. Sironi, and S. Martinengo, Synthesis and X-Ray Characterization of the High-nuclearity [Rh173-CO)3(μ-CO)15(CO)12]3– Anion containing a Tetracapped Twinned Cuboctahedral Cluster, J. Chem. Soc., Chem. Comm. 1981, 1280–1281.

    Google Scholar 

  155. C. Femoni, F. Kaswalder, M. C. Iapalucci, G. Longoni, M. Mehlstäubl, S. Zacchini, and A. Ceriotti, Synthesis and Crystal Structure of [NBu4]2[Pt24(CO)48]: An Infinite 1D Stack of [Pt3(CO)6] Units Morphologically Resembling a CO-Insulated Platinum Cable, Angew. Chem. Int. Ed. 45, 2060–2062 (2006).

    CAS  Google Scholar 

  156. C. Femoni, F. Kaswalder, M. C. Iapalucci, G. Longoni, and S. Zacchini, Infinite Molecular {[Pt3n(CO)6n]2–} Conductor Wires by Self-Assembly of [Pt3n(CO)6n]2– (n = 5–8) Cluster Dianions Formally Resembling CO-Sheathed Three-Platinum Cables, Eur. J. Inorg. Chem. 2007, 1483–1486.

    Google Scholar 

  157. G. Longoni, C. Femoni, M. C. Iapalucci, and P. Zanello, Electron-sink Features of Homoleptic Transition-metal Carbonyl Clusters, in: Metal Clusters in Chemistry (Eds. P. Braunstein, L. A. Oro, and P. R. Raithby, Wiley-VCH, Weinheim, 1999, Vol. 2, Chap. 3.9).

    Google Scholar 

  158. C. Femoni, M. C. Iapalucci, F. Kaswalder, G. Longoni, and S. Zacchini, The Possible Role of Metal Carbonyl Clusters in Nanoscience and Nanotechnologies, Coord. Chem. Rev. 250, 1580–1604 (2006).

    CAS  Google Scholar 

  159. E. G. Mednikov, S. A. Ivanov, I. V. Slovokhotova, and L. F. Dahl, Nanosized [Pd52(CO)36(PEt3)14] and [Pd66(CO)45(PEt3)16] Clusters Based on a Hypothetical Pd38 Vertex-Truncated ν3 Octahedron, Angew. Chem. Int. Ed. 44, 6848–6854 (2005).

    CAS  Google Scholar 

  160. N. T. Tran, D. R. Powell, and L. F. Dahl, Nanosized Pd145(CO)x(PEt3)30 Containing a Capped Three-Shell 145-Atom Metal-Core Geometry of Pseudo Icosahedral Symmetry, Angew. Chem. Int. Ed. 39, 4121–4125 (2000).

    CAS  Google Scholar 

  161. C. R. Eady, B. F. G. Johnson, and J. Lewis, Products from the Pyrolysis of Ru3(CO)12 and Os3(CO)12, J. Organomet. Chem. 37, C39–C40 (1972).

    CAS  Google Scholar 

  162. B. F. G. Johnson, and J. Lewis, Transition-Metal Molecular Clusters, Adv. Inorg. Chem. Radiochem. 24, 225–355 (1981).

    CAS  Google Scholar 

  163. R. Mason, K. M. Thomas, and D. M. P. Mingos, Stereochemistry of Octadecacarbonylhexaosmium(0). A Novel Hexanuclear Complex Based on a Bicapped Tetrahedron of Metal Atoms, J. Am. Chem. Soc. 95, 3802–3804 (1973).

    CAS  Google Scholar 

  164. K. Wade, The Structural Significance of the Number of Skeletal Bonding Electron-pairs in Carboranes, the Higher Borane Anions, and Various Transition-metal Carbonyl Cluster Compounds, Chem. Comm. 1971, 792–793.

    Google Scholar 

  165. C. R. Eady, B. F. G. Johnson, and J. Lewis, Synthesis and Carbon-13 Nuclear Magnetic Resonance Studies of the Hexanuclear Osmium Clusters [H2Os6(CO)18], [HOs6(CO)18], and [Os6(CO)18]2–, J. Chem. Soc., Chem. Comm. 1976, 302–303.

    Google Scholar 

  166. D. M. P. Mingos, and M. I. Forsyth, Molecular-orbital Calculations on Transition-metal Cluster Compounds containing Six Metal Atoms, J. Chem. Soc., Dalton Trans. 1977, 611–616.

    Google Scholar 

  167. P. F. Jackson, B. F. G. Johnson, J. Lewis, M. McPartlin, and W. J. H. Nelson, Synthesis of the Carbido Cluster [Os10(CO)24C]2– and the X-Ray Structure of [Os10(CO)24C][(Ph3P)2N], J. Chem. Soc., Chem. Comm. 1980, 224–226.

    Google Scholar 

  168. L. H. Gade, B. F. G. Johnson, J. Lewis, M. McPartlin, T. Kotch, and A. J. Lees, Photochemical Core Manipulation in High-Nuclearity Os–Hg Clusters, J. Am. Chem. Soc. 113, 8698–8704 (1991).

    CAS  Google Scholar 

  169. J. Lewis, and P. R. Raithby, Reflections on Osmium and Ruthenium Carbonyl Compounds, J. Organomet. Chem. 500, 227–237 (1995).

    CAS  Google Scholar 

  170. D. Braga, J. Lewis, B. F. G. Johnson, M. McPartlin, W. J. H. Nelson, and M. D. Vargas, Synthesis and X-Ray Analysis of the Tetrahydrido-dianion [H4Os10(CO)24]2–, the First Non-carbido Decaosmium Cluster, J. Chem. Soc.. Chem. Comm. 1983, 241–243.

    Google Scholar 

  171. E. Charalambous, L. H. Gade, B. F. G. Johnson, J. Lewis, M. McPartlin, and H. R. Powell, Synthesis and X-Ray Structure Analysis of the Largest Binary Osmium Carbonyl Cluster: [Os17(CO)36]2–, J. Chem. Soc. Chem. Comm. 1990, 688–690.

    Google Scholar 

  172. A. J. Amoroso, L. H. Gade, B. F. G. Johnson, J. Lewis, P. R. Raithby, and W.-T. Wong, (nBu4N)2[Os20(CO)40], a Thermally Generated Polynuclear Cluster Compound with a Tetrahedral Cubic Thickly Packed Cluster Nucleus, Angew. Chem. Int. Ed. Engl. 30, 107–109 (1991).

    Google Scholar 

  173. L. H. Gade, B. F. G. Johnson, J. Lewis, M. McPartlin, H. R. Powell, P. R. Raithby, and W.-T. Wong, Synthesis and Structural Characterisation of the Osmium Cluster Dianions [Os17(CO)36]2– and [Os20(CO)40]2–, J. Chem. Soc., Dalton Trans. 1994, 521–532.

    Google Scholar 

  174. B. Cornils, W. A. Herrmann, and M. Rasch, Otto Roelen, Pioneer in Industrial Homogeneous Catalysis, Angew. Chem. Int. Ed. Engl. 33, 2144–2163 (1994).

    Google Scholar 

  175. R. F. Heck, and D. S. Breslow, The Reaction of Cobalt Hydrotetracarbonyl with Olefins, J. Am. Chem. Soc. 83, 4023–4027 (1961).

    Google Scholar 

  176. P. M. Maitlis, and A. Haynes, Hydroformylation of Olefins, in: Metal-catalysis in Industrial Organic Processes (Eds. G. P. Chiusoli, and P. M. Maitlis, RSC Publishing, Cambridge, 2006, Chap. 4.6).

    Google Scholar 

  177. M. Beller, and K. Kumar, Hydroformylation: Applications in the Synthesis of Pharmaceuticals and Fine Chemicals, in: Transition Metals for Organic Synthesis, Second Ed. (Eds. M. Beller and C. Bolm, Wiley-VCH, Weinheim, 2004, Vol. 1, Chap. 2.1).

    Google Scholar 

  178. W. Reppe, Neue Entwicklungen auf dem Gebiete der Chemie des Acetylens und des Kohlenoxyds (Springer, Berlin, 1949).

    Google Scholar 

  179. W. Reppe, Chemie und Technik der Acetylen-Druck-Reaktionen, 2. Aufl. (Verlag Chemie, Weinheim, 1952).

    Google Scholar 

  180. W. Reppe, O. Schlichting, K. Klager, and T. Toepel, Cyclisierende Polymerisation von Acetylen I. Über Cyclooctatetraen, Liebigs Ann. Chem. 560, 1–92 (1948).

    CAS  Google Scholar 

  181. R. E. Colborn, and K. P. C. Vollhardt, On the Mechanism of the Cyclooctatetraene Synthesis from Ethyne Employing Nickel Catalysts, J. Am. Chem. Soc. 108, 5470–5477 (1986).

    CAS  Google Scholar 

  182. C. Hoogzand, and W. Hübel, Cyclic Polymerization of Acetylenes by Metal Carbonyl Compounds, in: Organic Synthesis via Metal Carbonyls (Eds. I. Wender and P. Pino, Wiley Interscience, New York, 1968, Vol. I, pp. 343–371).

    Google Scholar 

  183. H. Bönnemann, and W. Brijoux, Cyclomerization of Alkynes, in: Transition Metal for Organic Synthesis, Second Ed. (Eds. M. Beller and C. Bolm, Wiley-VCH, Weinheim, 2004, Vol. 1, Chap. 2.8).

    Google Scholar 

  184. F. A. Cotton, A Millenial Overview of Transition Metal Chemistry, J. Chem. Soc., Dalton Trans. 2000, 1961–1968.

    Google Scholar 

  185. H. Werner, Complexes of Carbon Monoxide and its Relatives: An Organometallic Family Celebrates Its Birthday, Angew. Chem. Int. Ed. Engl. 29, 1077–1089 (1990).

    Google Scholar 

  186. H. Behrens, The Chemistry of Metal Carbonyls: “The Life Work of Walter Hieber”, J. Organomet. Chem. 94, 139–159 (1975).

    CAS  Google Scholar 

  187. H. Behrens, Wissenschaft in Turbulenter Zeit (Münchner Universitätsschriften, Heft 25, Institut für Geschichte der Naturwissenschaften, München, 1998).

    Google Scholar 

  188. E. O. Fischer, In memoriam Walter Hieber, Chem. Ber. 112, XXI–XXXIX (1979).

    CAS  Google Scholar 

  189. R. E. Oesper, Walter Hieber, J. Chem. Educ. 31, 140–141 (1954).

    CAS  Google Scholar 

  190. Calderazzo, Prof. Paolo Chini: Biographical Memoir, J. Organomet. Chem. 213, ix–xii (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Werner, H. (2009). Transition Metal Carbonyls: From Small Molecules to Giant Clusters. In: Landmarks in Organo-Transition Metal Chemistry. Profiles in Inorganic Chemistry. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09848-7_4

Download citation

Publish with us

Policies and ethics