Skip to main content

The issue addressed in this chapter is age-old: How can learners be stimulated to move from assenting (passively and silently accepting what they are told, doing what they are shown how to do) to asserting (actively taking initiative, by making, testing and modifying conjectures, and by taking responsibility for making subject pertinent choices). How can learners be provoked into actively working on and making sense of the ideas and techniques that they encounter, and how can this cultural ethos be fostered and sustained?

I use the term asserting because of the assonance with assenting, but also because it signals that the learner is taking initiative and making significant choices. It is not intended to indicate that learners become either arrogant or garrulous. Much of the most desirable assertive behaviour is internal, and need not have visibly overt external behaviour. It involves taking initiative, taking control, making choices, and becoming independent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boaler, J. (1997). Experiencing School Mathematics: Teaching Styles, Sex and Setting. Buckingham: Open University Press

    Google Scholar 

  • Brousseau, G. (1984). The Crucial Role of the Didactical Contract in the Analysis and Construction of Situations in Teaching and Learning Mathematics. In H. Steiner (Ed.), Theory of Mathematics Education, Paper 54 (pp. 110–119). Institut fur Didaktik der Mathematik der Universitat Bielefeld.Boaler

    Google Scholar 

  • Brousseau, G. (1997). Theory of Didactical Situations in Mathematics: Didactiques des mathéma-tiques, 1970–1990, N. Balacheff, M. Cooper, R. Sutherland & V. Warfield (Trans. & Eds.). Dordrecht: Kluwer

    Google Scholar 

  • Brown, S., Collins, A. & Duguid, P. (1989). Situated Cognition and the Culture of Learning. Educational Researcher, 18(1), 32–41

    Google Scholar 

  • Bruner, J. (1996). The Culture of Education. Cambridge: Harvard University Press

    Google Scholar 

  • Bruner, J., Goodnow, J. & Austin, A. (1956). A Study of Thinking. New York: Wiley

    Google Scholar 

  • Davis, B. (1996). Teaching Mathematics: Toward a Sound Alternative. London: Garland

    Google Scholar 

  • diSessa, A. (1987). Phenomenology and the Evolution of Intuition. In C. Janvier (Ed.), Problems of Representation in the Teaching and Learning of Mathematics (pp. 83–96). Mahwah: Erlbaum

    Google Scholar 

  • Festinger, L. (1957). A Theory of Cognitive Dissonance. Stanford: Stanford University Press

    Google Scholar 

  • Fischbein, E. (1987). Intuition in Science and Mathematics: An Educational Approach. Dordecht: Reidel

    Google Scholar 

  • Fischbein, E. (1993). The Theory of Figural Concepts. Educational Studies in Mathematics, 24(2), 139–162

    Article  Google Scholar 

  • Floyd, A., Burton, L., James, N. & Mason, J. (1981). EM235: Developing Mathematical Thinking. Milton Keynes: Open University

    Google Scholar 

  • Gattegno, C. (1970). What We Owe Children: The Subordination of Teaching to Learning. London: Routledge & Kegan Paul

    Google Scholar 

  • Gattegno, C. (1987). The Science of Education Part I: Theoretical Considerations. New York: Educational Solutions

    Google Scholar 

  • Gattegno, C. (1988). The Mind Teaches the Brain. New York: Educational Solutions

    Google Scholar 

  • Halmos, P. (1994). What is Teaching? American Mathematical Monthly, 101(9), 848–854

    Article  Google Scholar 

  • Hamilton, E. & Cairns, H. (Eds.) (1961). Plato: The Collected Dialogues Including the Letters. Bollingen Series LXXI. Princeton: Princeton University Press

    Google Scholar 

  • Harré, R. & van Langenhove, L. (1999). Introducing Positioning Theory. In R. Harré & L. van Langenhove (Eds.), Positioning Theory (pp. 14–31). Oxford: Blackwell

    Google Scholar 

  • Johansson, B., Marton, F. & Svensson, L. (1985). An Approach to Describing Learning as Change Between Qualitatively Different Conceptions. In L. West & A. Pines (Eds.), Cognitive Structure and Conceptual Change (pp. 233–257). New York: Academic

    Google Scholar 

  • King, A. (1993). From Sage on the Stage to Guide on the Side. College Teaching, 41(1), 30–35

    Google Scholar 

  • Krutetskii, V.A. (1976). J. Teller, Trans.) In Kilpatrick, J. & Wirszup, I. (Eds.), The Psychology of Mathematical Abilities in School Children. Chicago: University of Chicago Press

    Google Scholar 

  • Laborde, C. (1995). Designing Tasks for Learning Geometry in a Computer Environment. In L. Burton & B. Jaworski (Eds.), Technology in Mathematics Teaching: A Bridge Between Teaching and Learning(pp. 35–67). London: Chartwell-Bratt

    Google Scholar 

  • Lakatos, I. (1976). Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge: Cambridge University Press

    Google Scholar 

  • Lave, J. & Wenger, E. (1991). Situated Learning: Legitimate Peripheral Participation. Cambridge: Cambridge University Press

    Google Scholar 

  • Legrand, M. (1990). Débat scientifique en cours de mathématiques. Repères-IREM, 10, 123–158

    Google Scholar 

  • Legrand, M. (1998/2000). Scientific Debate in Mathematics Course. La Lettre de la Preuve Novembre/Décembre 2000 on-line text. Retrieved May 2008 Http://europa.eu.int/comm/ research/conferences/2004/univ/pdf/univ_sciencediss_mathematics_290704_en.pdf

  • Lin, J. (2004). A Chinese Cultural Model of Learning. In F. Lianghuo, N.-Y. Wong, J. Cai & S. Li. (Eds.), How Chinese Learn Mathematics: Perspectives from Insiders (pp. 124–156). Singapore: World Scientific

    Google Scholar 

  • Love, E. & Mason, J. (1992). Teaching Mathematics: Action and Awareness. Milton Keynes: Open University

    Google Scholar 

  • MacHale, D. (1980). The Predictability of Counterexamples. American Mathematical Monthly, 87, 752

    Article  Google Scholar 

  • Marton, F. & Booth, S. (1997). Learning and Awareness. Hillsdale, USA: Lawrence Erlbaum

    Google Scholar 

  • Marton, F. & Trigwell, K. (2000). ‘Variatio est Mater Studiorum’.Higher Education Research and Development, 19(3), 381–395

    Article  Google Scholar 

  • Mason, J. (2002a). Mathematics Teaching Practice: A Guide for University and College Lecturers. Chichester: Horwood Publishing

    Google Scholar 

  • Mason, J. (2002b). Researching Your Own Practice: The Discipline of Noticing. London: RoutledgeFalmer

    Google Scholar 

  • Mason, J. (2003). On the Structure of Attention in the Learning of Mathematics. AAMT, 59(4), 17–25

    Google Scholar 

  • Mason, J. (2004). Doing ≠Construing and Doing + Discussing ≠ Learning: The importance of the structure of attention. Regular Lecture at the 10th International Congress on Mathematics Education. Copenhagen, July 2004

    Google Scholar 

  • Mason, J. (2007). Making Use of Children's Powers to Produce Algebraic Thinking. In D. Carraher, J. Kaput & M. Blanton (Eds.), Algebra in the early grades. Hillsdale: Erlbaum

    Google Scholar 

  • Mason, J., Burton, L. & Stacey, K. (1982). Thinking Mathematically. London: Addison Wesley

    Google Scholar 

  • Mason, J. & Johnston-Wilder, S. (2004). Fundamental Constructs in Mathematics education. London: RoutledgeFalmer

    Google Scholar 

  • Mason, J. & Johnston-Wilder, S. (2004/2006). Designing and Using Mathematical tasks. Milton Keynes: Open University, republished (2006). St. Albans: Tarquin

    Google Scholar 

  • Mason, J. & Watson, A. (2001). Stimulating Students to Construct Boundary Examples, Quaestiones Mathematicae, 24 (Suppl 1), 123–132

    Google Scholar 

  • Montessori, M. (1912 reprinted 1964). (George, A. Trans.) The Montessori Method. New York: Schocken Books

    Google Scholar 

  • Norretranders, T. (1998). (J. Sydenham, Trans.). The User Illusion: Cutting Consciousness Down to Size. London: Allen Lane

    Google Scholar 

  • Noss, R. & Hoyles, C. (1996). Windows on Mathematical Meanings: Learning Cultures and Computers. Dordrecht: Kluwer

    Google Scholar 

  • Piaget, J. (1971). Biology and Knowledge. Chicago: University of Chicago Press

    Google Scholar 

  • Pólya, G. (1962). Mathematical Discovery: On Understanding, Learning, and Teaching Problem Solving. New York: Wiley

    Google Scholar 

  • Popper, K. (1972). Objective Knowledge: An Evolutionary Approach. Oxford: Oxford University Press

    Google Scholar 

  • Renkl, A., Stark, R., Gruber, H. & Mandl, H. (1998). Learning from Worked-out Examples: The Effects of Example Variability and Elicited Self-explanations. Contemporary Educational Psychology, 23, 90–108

    Article  Google Scholar 

  • Rissland, E.L. (1991). Example-based Reasoning. In J.F. Voss, D.N. Parkins & J.W. Segal (Eds.), Informal Reasoning in Education (pp. 187–208). Hillsdale, NJ: Lawrence Erlbaum

    Google Scholar 

  • Rowland, T. (2001). Generic Proofs in Number Theory. In S. Campbell & R. Zazkis (Eds.), Learning and Teaching Number Theory: Research in Cognition and Instruction (pp. 157–184). Westport, CT: Ablex

    Google Scholar 

  • Salomon, G. (1979). Interaction of Media, Cognition and Learning. London: Jossey-Bass

    Google Scholar 

  • Spencer, H. (1878). Education: Intellectual, Moral, and Physical. London: Williams and Norgate

    Google Scholar 

  • Sweller, J. & Cooper, G.A. (1985). The Use of Worked Examples as a Substitute for Problem Solving in Learning Algebra. Cognition and Instruction, 2, 59–85

    Article  Google Scholar 

  • Thompson, P. (2002). Didactic Objects and Didactic Models in Radical Constructivism. In K. Gravemeijer, R. Lehrer, B. van Oers & L. Verschaffel (Eds.), Symbolizing, Modeling and Tool Use in Mathematics Education (pp. 191–212). Dordrecht: Kluwer

    Google Scholar 

  • van Hiele, P. (1986). Structure and Insight: A Theory of Mathematics Education. London: Academic Press

    Google Scholar 

  • Walker, J. (1975). The Flying Circus of Physics with Answers. New York: Wiley

    Google Scholar 

  • Warfield, V. (2005). (accessed June 05). Calculus by Scientific Debate as an Application of didac-tique. On line document. Retrieved May 2008. Http://www.math.washington.edu/warfield/ articles/Calc&Didactique.html

  • Watson, A. & Mason, J. (2005). Mathematics as a Constructive Activity: The Role of Learner-Generated Examples. Mahwah: Erlbaum

    Google Scholar 

  • Wertheimer, M. (1945). Productive Thinking. New York: Harper

    Google Scholar 

  • Whitehead, A. (1932). The Aims of Education and Other Essays. London: Williams and Norgate

    Google Scholar 

  • Winston, P. (1975). Learning Structural Descriptions from Examples. In P. Winston (Ed.), The Psychology of Computer Vision (pp. 157–210). New York: McGraw-Hill

    Google Scholar 

  • Wood, D., Bruner, J. & Ross, G. (1976). The Role of Tutoring in Problem Solving. Journal of Child Psychology, 17, 89–100

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mason, J. (2009). From Assenting to Asserting. In: Skovsmose, O., Valero, P., Christensen, O.R. (eds) University Science and Mathematics Education in Transition. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09829-6_2

Download citation

Publish with us

Policies and ethics