Skip to main content

Geometric Methods for Feature Extraction and Dimensional Reduction - A Guided Tour

  • Chapter
  • First Online:

Summary

We give a tutorial overview of several geometric methods for feature extractionand dimensional reduction. We divide the methods into projective methods and methods thatmodel the manifold on which the data lies. For projective methods, we review projectionpursuit, principal component analysis (PCA), kernel PCA, probabilistic PCA, and orientedPCA; and for the manifold methods, we review multidimensional scaling (MDS), landmarkMDS, Isomap, locally linear embedding, Laplacian eigenmaps and spectral clustering. TheNyström method, which links several of the algorithms, is also reviewed. The goal is to providea self-contained review of the concepts and mathematics underlying these algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • M.A. Aizerman, E.M. Braverman, and L.I. Rozoner. Theoretical foundations of the potentialfunction method in pattern recognition learning. Automation and Remote Control, 25:821–837, 1964.

    Google Scholar 

  • P.F. Baldi and K. Hornik. Learning in linear neural networks: A survey. IEEE Transactions on Neural Networks, 6(4):837–858, July 1995.

    Article  Google Scholar 

  • A. Basilevsky. Statistical Factor Analysis and Related Methods. Wiley, New York, 1994.

    Book  MATH  Google Scholar 

  • M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6):1373–1396, 2003.

    Article  MATH  Google Scholar 

  • Y. Bengio, J. Paiement, and P. Vincent. Out-of-sample extensions for LLE, Isomap, MDS, Eigenmaps and spectral clustering. In Advances in Neural Information Processing Systems 16. MIT Press, 2004.

    Google Scholar 

  • C. Berg, J.P.R. Christensen, and P. Ressel. Harmonic Analysys on Semigroups. Springer-Verlag, 1984.

    Google Scholar 

  • C. M. Bishop. Bayesian PCA. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Advances in Neural Information Processing Systems, volume 11, pages 382–388, Cambridge, MA, 1999. The MIT Press.

    Google Scholar 

  • I. Borg and P. Groenen. Modern Multidimensional Scaling: Theory and Applications. Springer, 1997.

    Google Scholar 

  • B. E. Boser, I. M. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In Fifth Annual Workshop on Computational Learning Theory, pages 144–152, Pittsburgh, 1992. ACM.

    Google Scholar 

  • C.J.C. Burges. Some Notes on Applied Mathematics for Machine Learning. In O. Bousquet, U. von Luxburg, and G. Rätsch, editors, Advanced Lectures on Machine Learning, pages 21–40. Springer Lecture Notes in Aritificial Intelligence, 2004.

    Google Scholar 

  • C.J.C. Burges, J.C. Platt, and S. Jana. Extracting noise-robust features from audio. In Proc. IEEE Conference on Acoustics, Speech and Signal Processing, pages 1021–1024. IEEESignal Processing Society, 2002.

    Google Scholar 

  • C.J.C. Burges, J.C. Platt, and S. Jana. Distortion discriminant analysis for audio fingerprinting. IEEE Transactions on Speech and Audio Processing, 11(3):165–174, 2003.

    Article  Google Scholar 

  • F.R.K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.

    Google Scholar 

  • T.F. Cox and M.A.A. Cox., Multidimensional Scaling. Chapman and Hall, 2001. R.B. Darlington. Factor analysis. Technical report, Cornell University, http://comp9.psych.cornell.edu/Darlington/factor.htm.

  • V. de Silva and J.B. Tenenbaum. Global versus local methods in nonlinear dimensionalityreduction. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems 15, pages 705–712. MIT Press, 2002.

    Google Scholar 

  • P. Diaconis and D. Freedman. Asymptotics of graphical projection pursuit. Annals of Statistics, 12:793–815, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  • K.I. Diamantaras and S.Y. Kung. Principal Component Neural Networks. JohnWiley, 1996.

    Google Scholar 

  • R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis. John Wiley, 1973.

    Google Scholar 

  • C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using the Nyström method. IEEE Trans. Pattern Analysis and Machine Intelligence, 26 (2), 2004.

    Google Scholar 

  • J.H. Friedman and W. Stuetzle. Projection pursuit regression. Journal of the American Statistical Association, 76(376):817–823, 1981.

    Article  MathSciNet  Google Scholar 

  • J.H. Friedman, W. Stuetzle, and A. Schroeder. Projection pursuit density estimation. J. Amer. Statistical Assoc., 79:599–608, 1984.

    Article  MathSciNet  Google Scholar 

  • J.H. Friedman and J.W. Tukey. A projection pursuit algorithm for exploratory data analysis. IEEE Transactions on Computers, c-23(9):881–890, 1974.

    Article  Google Scholar 

  • G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins, third edition, 1996.

    Google Scholar 

  • M. Gondran and M. Minoux. Graphs and Algorithms. John Wiley and Sons, 1984.

    Google Scholar 

  • I. Guyon. NIPS 2003 workshop on feature extraction: http://clopinet.com/isabelle/Projects/NIPS2003/.

  • J. Ham, D.D. Lee, S. Mika, and B. Schölkopf. A kernel view of dimensionality reduction ofmanifolds. In Proceedings of the International Conference on Machine Learning, 2004.

    Google Scholar 

  • T.J. Hastie and W. Stuetzle. Principal curves. Journal of the American Statistical Association, 84(406):502–516, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  • R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

    MATH  Google Scholar 

  • P.J. Huber. Projection pursuit. Annals of Statistics, 13(2):435–475, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis. Wiley, 2001.

    Google Scholar 

  • Y. LeCun and Y. Bengio. Convolutional networks for images, speech and time-series. InM. Arbib, editor, The Handbook of Brain Theory and Neural Networks. MIT Press, 1995.

    Google Scholar 

  • M. Meila and J. Shi. Learning segmentation by random walks. In Advances in Neural Information Processing Systems, pages 873–879, 2000.

    Google Scholar 

  • S. Mika, B. Schölkopf, A. J. Smola, K.-R. M¨uller, M. Scholz, and G. Rätsch. Kernel PCAand de–noising in feature spaces. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, 82 Christopher J.C. Burges Advances in Neural Information Processing Systems 11. MIT Press, 1999.

    Google Scholar 

  • A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: analysis and an algorithm. In Advances in Neural Information Processing Systems 14. MIT Press, 2002.

    Google Scholar 

  • J. Platt. Private Communication.

    Google Scholar 

  • J. Platt. Fastmap, MetricMap, and Landmark MDS are all Nyström algorithms. In Z. Ghahramaniand R. Cowell, editors, Proc. 10th International Conference on Artificial Intelligence and Statistics, 2005.

    Google Scholar 

  • W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vettering. Numerical recipes in C: the art of scientific computing. Cambridge University Press, 2nd edition, 1992.

    Google Scholar 

  • S.T. Roweis and L.K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(22):2323–2326, 2000.

    Article  Google Scholar 

  • I.J. Schoenberg. Remarks to maurice frechet’s article sur la définition axiomatique d’uneclasse d’espace distanciés vectoriellement applicable sur espace de hilbert. Annals of Mathematics, 36:724–732, 1935.

    Article  MathSciNet  Google Scholar 

  • B. Schölkopf. The kernel trick for distances. In T.K. Leen, T.G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 301–307. MIT Press, 2001.

    Google Scholar 

  • B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, 2002.

    Google Scholar 

  • B. Schölkopf, A. Smola, and K-R. Muller. Nonlinear component analysis asa kernel eigenvalue problem. Neural Computation, 10(5):1299–1319, 1998.

    Article  Google Scholar 

  • J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

    Article  Google Scholar 

  • C.E. Spearman. ’General intelligence’ objectively determined and measured. American Journal of Psychology, 5:201–293, 1904.

    Article  Google Scholar 

  • C.J. Stone. Optimal global rates of convergence for nonparametric regression. Annals of Statistics, 10(4):1040–1053, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  • J.B. Tenenbaum. Mapping a manifold of perceptual observations. In Michael I. Jordan,Michael J. Kearns, and Sara A. Solla, editors, Advances in Neural Information Processing Systems, volume 10. The MIT Press, 1998.

    Google Scholar 

  • M.E. Tipping and C.M. Bishop. Probabilistic principal component analysis. Journal of the Royal Statistical Society, 61(3):611, 1999A.

    Article  MATH  MathSciNet  Google Scholar 

  • M.E. Tipping and C.M. Bishop. Mixtures of probabilistic principal component analyzers. Neural Computation, 11(2):443–482, 1999B.

    Article  Google Scholar 

  • P. Viola and M. Jones. Robust real-time object detection. In Second international workshop on statistical and computational theories of vision - modeling, learning, computing, and sampling, 2001.

    Google Scholar 

  • S. Wilks. Mathematical Statistics. John Wiley, 1962.

    Google Scholar 

  • C.K.I. Williams. On a Connection between Kernel PCA and Metric Multidimensional Scaling. In T.K. Leen, T.G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 675–681. MIT Press, 2001.

    Google Scholar 

  • C.K.I. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. InLeen, Dietterich, and Tresp, editors, Advances in Neural Information Processing Systems 13, pages 682–688. MIT Press, 2001.

    Google Scholar 

Download references

Acknowledgments

I thank John Platt for valuable discussions. Thanks also to Lawrence Saul, Bernhard Schölkopf, Jay Stokes and Mike Tipping for commenting on the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Burges, C.J. (2009). Geometric Methods for Feature Extraction and Dimensional Reduction - A Guided Tour. In: Maimon, O., Rokach, L. (eds) Data Mining and Knowledge Discovery Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09823-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09823-4_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09822-7

  • Online ISBN: 978-0-387-09823-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics