Skip to main content

Methods for Deriving Pesticide Aquatic Life Criteria

  • Chapter
  • First Online:

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 199))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alabaster JS, Lloyd R (1982) Water quality criteria for freshwater fish. Butterworth Scientific, Surrey, UK 253–314.

    Google Scholar 

  • Aldenberg T, Jaworska JS (2000) Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions. Ecotox Environ Saf 46: 1–18.

    CAS  Google Scholar 

  • Aldenberg T, Slob W (1993) Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data. Ecotox Environ Saf 25: 48–63.

    CAS  Google Scholar 

  • Aldenberg T, Luttik R (2002) Extrapolation factors for tiny toxicity data sets from species sensitivity distributions with known standard deviation. In: Posthuma L, Suter II GW, Traas (eds), TP Species Sensitivity Distributions in Ecotoxicology. Lewis Publishers, CRC Press, New York, NY.

    Google Scholar 

  • ANZECC and ARMCANZ (2000) Australian and New Zealand guidelines for fresh and marine water quality. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource management Council of Australia and New Zealand, Canberra, Australia.

    Google Scholar 

  • Applegate JS (2000) The precautionary preference: An American perspective on the precautionary principle. Human Ecol Risk Assess 6: 413–443.

    Google Scholar 

  • AQUIRE (1981-present) AQUIRE database. US Environmental Protection Agency. Available through ECOTOX at http://www.epa.gov/ecotox/.

    Google Scholar 

  • AQUIRE (Aquatic Toxicity Information Retrieval Database) (1994) AQUIRE standard operating procedures. USEPA, Washington, DC.

    Google Scholar 

  • Auer CM, Nabholz JV, Baetcke KP (1990) Mode of action and the assessment of chemical hazards in the presence of limited data: Use of Structure-Activity Relationships (SAR) under TSCA, Section 5. Environ Health Perspect 87: 183–197.

    CAS  Google Scholar 

  • Bailey HC, Deanovic L, Reyes E, Kimball T, Larson K, Cortright K, Connor V, Hinton DE (2000) Diazinon and chlorpyrifos in urban waterways in Northern California, USA. Environ Toxicol Chem 19: 82–87.

    CAS  Google Scholar 

  • Barber MC, Suarez LA, Lassiter RR (1988) Modeling bioconcentration of nonpolar organic pollutants by fish. Environ Toxicol Chem 7: 545–558.

    CAS  Google Scholar 

  • Bedaux JJM, Kooijman SALM (1993) Statistical analysis of bioassays, based on hazard modeling. Environ Ecol Stat 1: 303–314.

    Google Scholar 

  • Benson WH, Allen HE, Connolly JP, Delos CG, Hall LW Jr, Luoma SN, Maschwitz D, Meyer JS, Nichols JW, Stubblefield WA (2003) Exposure Analysis. In: Reiley M, Stubblefield WA, Adams WJ, Di Toro DM, Hodson PV, Erickson RJ, Keating FJ Jr (eds), Reevaluation of the State of the Science for Water-Quality Criteria Development, SETAC Press, Pensacola, FL.

    Google Scholar 

  • BIODEG (1992) Biodegradation probability program (version 3.0). Now called BioWin. Available at http://www.syrres.com/esc/est_soft.htm.

    Google Scholar 

  • BMU (2001) Environment Policy, Environment Resources Management in Germany, Part II, Quality of Inland Surface Waters. Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, Div. WAI 1(B), Postfach 12 06 29, Bonn Germany.

    Google Scholar 

  • Bockting GJM, Van De Plassche EJ, Struijs J, Canton JG (1993) Soil-water partition coefficients for organic compounds. RIVM Report No. 679101013. National Institute of Public Health and the Environment, Bilthoven, The Netherlands.

    Google Scholar 

  • Borthwick PW, Clark JR, Montgomery RM, Patrick JM Jr, Lores EM (1985) Field confirmation of a laboratory-derived hazard assessment of the acute toxicity of fenthion to pink shrimp, Penaeus duorarum In:.Bahner RC, Hansen DJ (eds), Aquatic Toxicology and Hazard Assessment: Eighth Symposium. ASTM STP 891, American Society of Testing and Materials, Philadelphia, PA, pp 177–189.

    Google Scholar 

  • Bringmann G, Kühn R (1977) Befunde der Schadwirking wassergefährdender Stoffe gegen Daphnia magna. (Hazardous substances in water towards Daphnia magna) Z Wasser Abwasserf 10: 161–166.

    CAS  Google Scholar 

  • Bro-Rasmussen F, Calow P, Canton JH, Chambers PL, Silva Fernandes A, Hoffmann L, Jouany J-M, Klein W, Persoone G, Scoullos M, Tarazona JV, Vighi M (1994) EEC water quality objectives for chemicals dangerous to aquatic environments (List 1). Rev Environ Contam Toxicol 137: 83–110.

    CAS  Google Scholar 

  • Brown MD, Carter J, Thomas D, Purdie DM, Kay BH (2002) Pulse-exposure effects of selected insecticides to juvenile Australian crimson-spotted rainbowfish (Melanotaenia duboulayi.) J Econ Entomol 95: 294–298.

    CAS  Google Scholar 

  • Bruce RD, Versteeg DJ (1992) A statistical procedure for modeling continuous toxicity data. Environ Toxicol Chem 11: 1485–1494.

    CAS  Google Scholar 

  • Burgess RM, Pelletier MC, Gundersen JL, Perron MM, Ryba SA (2005) Effects of different forms of organic carbon on the partitioning and bioavailability of nonylphenol. Environ Toxicol Chem 24: 1609–1617.

    CAS  Google Scholar 

  • Burr IW (1942) Cumulative frequency functions. Ann Math Stat 13: 215–232.

    Google Scholar 

  • Burreau S, Axelman J, Broman D, Jakobsson E (1997) Dietary uptake in pike (Esox lucius.) of some polychlorinated biphenyls, polychlorinated naphthalenes and polybrominated diphenyl ethers administered in natural diet Environ Toxicol Chem 16: 2508–2513.

    CAS  Google Scholar 

  • Calabrese EJ, Baldwin LA (1993) Performing ecological risk assessments. Lewis Publishers, Chelsea, MI, pp 170–171.

    Google Scholar 

  • California DPR (2005a) Registration Desk Manual, Chapter 6, Data requirements for obtaining product registration and for label amendments. California Department of Pesticide Regulation, Sacramento, CA.

    Google Scholar 

  • California DPR (2005b) Pesticide Use Report, http://www.cdpr.ca.gov/docs/pur/pur03rep/03_pur.htm, California Department of Pesticide Regulation, Sacramento, CA.

    Google Scholar 

  • California SWRCB (2005) State Water Resources Control Board web site. http://www.swrcb.ca.gov/about/mission.html.

    Google Scholar 

  • Callaghan A, Fisher TC, Grosso A, Holloway GJ, Crane M (2002) Effect of temperature and pirimiphos methyl on biochemical biomarkers in Chironomus riparius. Meigen Ecotox Environ Saf 52: 128–133.

    CAS  Google Scholar 

  • Campbell E, Palmer MJ, Shao Q, Warne MStJ, Wilson D (2000) BurrliOZ: A computer program for calculating toxicant trigger values for the ANZECC and ARMCANZ water quality guidelines. Perth, Western Australia

    Google Scholar 

  • CCME (1997) Protocol for the derivation of Canadian tissue residue guidelines for the protection of wildlife that consume aquatic biota. Canadian Council of Ministers of the Environment, Ottawa.

    Google Scholar 

  • CCME (1999) A protocol for the derivation of water quality guidelines for the protection of aquatic life. Canadian Environmental Quality Guidelines. Canadian Council of Ministers of the Environment, Ottawa.

    Google Scholar 

  • Chapman PM, Fairbrother A, Brown D (1998) A critical evaluation of safety (uncertainty) factors for ecological risk assessment. Environ Toxicol Chem 17: 99–108.

    CAS  Google Scholar 

  • Cold A, Forbes VE (2004) Consequences of a short pulse of pesticide exposure for survival and reproduction of Gammarus pulex. Aquat Toxicol 67: 287–299.

    CAS  Google Scholar 

  • Cox C (1987) Threshold dose-response models in toxicology. Biometrics 43: 511–524.

    CAS  Google Scholar 

  • Crane M (1997) Research needs for predictive multispecies tests in aquatic toxicology. Hydrobiologia 346: 149–155.

    CAS  Google Scholar 

  • Crane M, Attwood C, Sheahan D, Morris S (1999) Toxicity and bioavailability of the organophosphorous insecticide pirimiphos methyl to the freshwater amphipod Gammarus pulex. L. in laboratory and mesocosm systems Environ Toxicol Chem 18: 1456–1461.

    CAS  Google Scholar 

  • Crane M, Chapman PF, Sparks T, Fenlon J, Newman MC (2002) Can risk assessment be improved with time to event models? In: Crane M, Newman MC, Chapman PF, Fenlon J (eds), Risk Assessment with Time to Event Models, Lewis Publishers, Boca Raton, FL, pp 153–166.

    Google Scholar 

  • Crane M, Newman MC (2000) What level of effect is a no observed level? Environ Toxicol Chem 19: 516–519.

    CAS  Google Scholar 

  • Crane M, Sildanchandra W, Kheir R, Callaghan A (2002) Relationship between biomarker activity and developmental endpoints in Chironomus riparius. Meigen exposed to an organophosphate insecticide Ecotox Environ Saf 53: 361–369.

    CAS  Google Scholar 

  • Cronin MTD, Walker JD, Jaworska JS, Comber MHI, Watts CD, Worth AP (2003) Use of QSARs in international decision-making frameworks to predict ecologic effects and environmental fate of chemical substances. Environ Health Perspect 111: 1376–1390.

    CAS  Google Scholar 

  • CSIRO (2001) BurrliOZ v. 1.0.13. Commonwealth Scientific and Industrial Research Organization, Australia.

    Google Scholar 

  • CSTE/EEC (1987) Internal report CSTE/87/101/XI from Directorate/EEC General for Environment, Nuclear Safety and Civil Protection, DG XI/A/2, Brussels.

    Google Scholar 

  • Curtis H, Barnes SN (1981) Invitation to biology, 3rd Ed. Worth Publishers, Inc. New York.

    Google Scholar 

  • CVRWQCB (2004) Water Quality Control Plan for the Sacramento River and San Joaquin River Basins, 4th Edition (as amended in 2004). Central Valley Regional Water Quality Control Board, Rancho Cordova, CA.

    Google Scholar 

  • Daily GC, Ehrlich PR, Haddad NM (1993) Double keystone bird in a keystone species complex. Proc Natl Acad Sci USA 90: 592–594.

    CAS  Google Scholar 

  • Daniels RE, Allan JD (1981) Life table evaluation of chronic exposure to a pesticide. Can J Fish Aquat Sci 38: 485–494.

    CAS  Google Scholar 

  • De Coen WM, Janssen CR (2003) A multivariate biomarker-based model predicting population-level responses of Daphnia magna. Environ Toxicol Chem 22: 2195–2201.

    CAS  Google Scholar 

  • Del Carmen Alvarez M, Fuiman LA (2005) Environmental levels of atrazine and its degradation products impair survival skills and growth of red drum larvae. Aquat Toxicol 74: 229–241.

    Google Scholar 

  • Dileanis PD, Bennett KP, Domagalski JL (2002) Occurrence and transport of diazinon in the Sacramento River, California, and selected tributaries during three winter storms, January-February, 2000. United States Geological Survey, Water-Resources Investigations Report 02–4101.

    Google Scholar 

  • Dileanis PD, Brown DL, Knifong DL, Saleh D (2003) Occurrence and transport of diazinon in the Sacramento River and selected tributaries, California, during two winter storms, January-February, 2001. United States Geological Survey, Water-Resources Investigations Report 03–4111.

    Google Scholar 

  • Di Toro DM (2003) Executive Summary. In: Re-evaluation of the State of the Science for Water-Quality Criteria Development. SETAC Press, Pensacola, FL, pp xxi–xxv.

    Google Scholar 

  • Dixon PM, Newman MC (1991) Analyzing toxicity data using statistical models of time-to-death: An introduction. In: Newman MC, McIntosh AW (eds), Metal Ecotoxicology: Concepts and Applications. Lewis Publishers, Inc., Chelsea, MI., pp 207–242

    Google Scholar 

  • Domagalski J (2000) Pesticides in surface water measured at select sites in the Sacramento River basin, California 1996–1998. United States Geological Survey, Water-Resources Investigations Report 00–4203.

    Google Scholar 

  • Duboudin C, Ciffroy P, Magaud H (2004) Acute-to-chronic species sensitivity distribution extrapolation. Environ Toxicol Chem 23: 1774–1785.

    CAS  Google Scholar 

  • Dubrovsky NM, Kratzer CR, Brown LR, Gronberg JAM, Burow KR (1998) Water quality in the San Joaquin-Tulare Basin, California 1992–95, United States Geological Survey Circular 1159, on line @ URL:http://water.usgs.gov/pubs/circ1159, updated April 20, 1998.

    Google Scholar 

  • ECB (2003) Technical guidance document on risk assessment in support of commission directive 93/67/EEC on risk assessment for new notified substances, commission regulation (EC) no. 1488/94 on risk assessment for existing substances, directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Part II. Environmental Risk Assessment. European Chemicals Bureau, European Commission Joint Research Center, European Communities.

    Google Scholar 

  • ECETOC (1993) Aquatic toxicity data evaluation. ECETOC Technical Report No. 56. ECETOC, Brussels.

    Google Scholar 

  • ECOFRAM (1999) Committee on FFRA risk assessment methods aquatic report. US Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Egeler P, Meller M, Roembke J, Spoerlein P, Streit B, Nagel R (2001) Tubifex tubifex. as a link in food chain transfer of hexachlorobenzene from contaminated sediment to fish Hydrobiologia 463: 171–184.

    CAS  Google Scholar 

  • Emans HJB, Van Den Plassche EJ, Canton JH (1993) Validation of some extrapolation methods used for effect assessment. Environ Toxicol Chem 12: 2139–2154.

    CAS  Google Scholar 

  • Erickson RJ, Stephan CE (1988) Calculation of the final acute value for water quality criteria for aquatic organisms. EPA/600/3-88-018. US Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Ericksson L, Jaworska J, worth AP, Cronin MTD, McDowell RM, Gramatica P (2003) Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ Health Perspect 111: 1361–1375.

    Google Scholar 

  • EU (2000) Council Directive of 23 October 2002. Establishing a framework for community action in the field of water policy (2000/60/EC). Official Journal of the European Communities, L327, 22 December.

    Google Scholar 

  • EVS (1999) A critique of the ANZECC and ARMCANZ (1999) water quality guidelines. Prepared for: Minerals Council of Australia and Kwinana Industries Council. Final Report, October 1999, EVS, Vancouver, BC.

    Google Scholar 

  • Felsot AS (2005) A critical analysis of the draft report, “Amendments to the Water Quality Control Plan for the Sacramento River and San Joaquin River Basins for the Control of Diazinon and Chlorpyrifos Runoff into the Lower San Joaquin River” (Karkoski et al. 2004) and supporting documents. Prepared for the Central Valley Regional Water Quality Control Board, Sacramento, CA.

    Google Scholar 

  • Fisher DJ, Burton DT (2003) Comparison of two US Environmental Protection Agency species sensitivity distribution methods for calculation ecological risk criteria. Hum Ecol Risk Assess 9: 675–690.

    CAS  Google Scholar 

  • Fisk AT, Norstrom RF, Cymbalisty CD, Muir DCG (1998) Dietary accumulation and depuration of hydrophobic organochlorines: Bioaccumulation parameters and their relationship with the octanol/water partition coefficient. Environ Toxicol Chem 17: 951–961.

    CAS  Google Scholar 

  • Forbes VE, Cold A (2005) Effects of the pyrethroid esfenvalerate on life-cycle traits and population dynamics of Chironomus riparius.—Importance of exposure scenario Environ Toxicol Chem 24: 78–86.

    CAS  Google Scholar 

  • Fox DR (1999) Setting water quality guidelines—A statistician’s perspective. SETAC News 19: (3)17–18.

    Google Scholar 

  • Gentile H, Gentile SM, Hairston HG Jr, Sullivan BK (1982) The use of life-tables for evaluating the chronic toxicity of pollutants to Mysidopsis bahia. Hydrobiologia 93: 179–187.

    CAS  Google Scholar 

  • GESAMP (1989) The evaluation of the hazards of harmful substances carried by ships: Revision of GESAMP reports and studies No. 17. IMO Reports and studies No. 35. Group of Experts on the Scientific Aspects of Marine Protection (United Nations).

    Google Scholar 

  • GLEC (2003) Draft compilation of existing guidance for the development of site-specific water quality objectives in the state of California. Great Lakes Environmental Center, Columbus, OH.

    Google Scholar 

  • Giesy JP, Solomon KR, Coates JR, Dixon KR, Giddings JF, Kenaga EE (1999) Chlorpyrifos: Ecological risk assessment in North American aquatic environments. Rev Environ Contam Toxicol 160: 1–129.

    CAS  Google Scholar 

  • Gobas FAPC, Muir DCG, Mackay D (1988) Dynamics of dietary bioaccumulations and faecal elimination of hydrophobic chemicals in fish. Chemosphere 17: 943–962.

    CAS  Google Scholar 

  • Government of British Columbia (1995) Derivation of water quality criteria to protect aquatic life in British Columbia. Government of British Columbia, Ministry of Land, Air and Water Protection, Water Quality Branch, http://wlapwww.gov.bc.ca/wat/wq/BCguidelines/derive.html#can.

    Google Scholar 

  • Grist EPM, Crane M, Jones C, Whitehouse P (2003) Estimation of demographic toxicity through the double bootstrap. Wat Res 37: 618–626.

    CAS  Google Scholar 

  • Grist EPM, Leung KMY, Sheeler JR, Crane M (2002) Better bootstrap estimation of hazardous concentration thresholds for aquatic assemblages. Environ Toxicol Chem 21: 1515–1524.

    CAS  Google Scholar 

  • Grothe DR, Kickson KL, Reed-Judkins DK (eds) (1996) Whole effluent toxicity testing: An evaluation of methods and prediction of receiving system impacts. SETAC Press, Pensacola, FL.

    Google Scholar 

  • Hansch C, Leo A (1979) Substituent constants for correlation analyses in chemistry and biology. John Wiley and Sons, New York, NY.

    Google Scholar 

  • Hansch C, Leo A, Hoekman D (1995) Exploring QSAR. Hydrophobic, electronic, and steric constants. American Chemical Society, Washington, DC.

    Google Scholar 

  • Hanson ML, Sanderson H, Solomon KR (2003) Variation, replication, and power analysis of Myriophyllum. spp. microcosm toxicity data Environ Toxicol Chem 22: 1318–1329.

    CAS  Google Scholar 

  • Heckman L-H, Friberg N (2005) Macroinvertebrate community response to pulse exposures with the insecticide lambda-cyhalothrin using in-stream mesocosms. Environ Toxicol Chem 24: 582–590.

    Google Scholar 

  • Hodson PV, Blunt BR, Borgmann U, Minns CK, McGraw S (1983) Effect of fluctuating lead exposures on lead accumulation by rainbow trout (Salmo gairdneri.) Environ Toxicol Chem 2: 225–238.

    CAS  Google Scholar 

  • Hoekstra JA, Van Ewijk (1993) Alternatives for the no-observed-effect level. Environ Toxicol Chem 12: 187–194.

    Google Scholar 

  • Hose GC, Van Den Brink PJ (2004) Confirming the species-sensitivity distribution concept for endosulfan using laboratory, mesocosm, and field data. Arch Environ Contam Toxicol 47: 511–520.

    CAS  Google Scholar 

  • Host GE, Regal RR, Stephan CE (1995) Analyses of acute and chronic data for aquatic life. US. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Howard PH (1990) Handbook of environmental fate and exposure data for organic chemicals. Vol. II: Solvents. ISBN 0–87371–204–8, Lewis Publishers, Chelsea, MI.

    Google Scholar 

  • Howard PH (1991) Handbook of environmental fate and exposure data for organic chemicals. Vol. III: Pesticides. ISBN 0–83731–328–1, Lewis Publishers, Chelsea, MI.

    Google Scholar 

  • Ingersoll CG, Winner RW (1982) Effect on Daphnia pulex. (de geer) of daily pulse exposures to copper or cadmium Environ Toxicol Chem 1: 321–327.

    CAS  Google Scholar 

  • Irmer U, Markard C, Blondzik K, Gottschalk C, Kussatz C, Rechenberg B, Schudoma D (1995) Quality targets for concentrations of hazardous substances in surface waters in Germany. Ecotox Environ Saf 32: 233–243.

    CAS  Google Scholar 

  • Jagoe RH, Newman MC (1997) Bootstrap estimation of community NOEC values. Ecotoxicol 6: 293–306.

    CAS  Google Scholar 

  • Jaworska JS, Comber M, Auer C, Van Leeuwen CJ (2003) Summary of a workshop on regulatory acceptance of (Q)SARs for human health and environmental endpoints. Environ Health Perspectives 111: 1358–1360.

    Google Scholar 

  • Kem I (1989) Environmentally hazardous substances. List of examples and scientific documentation. Kemikalieinspektionen 10/89, 303 pp (in Swedish).

    Google Scholar 

  • Kenaga EE (1982) Predictability of chronic toxicity from acute toxicity of chemicals in fish and aquatic invertebrates. Environ Toxicol Chem 1: 347–358.

    CAS  Google Scholar 

  • Kloepper-Sams PJ, Owens JW (1993) Environmental biomarkers as indicators of chemical exposure. J Haz Mat 35: 283–294.

    CAS  Google Scholar 

  • Könemann H (1981) Fish toxicity tests with mixtures of more than two chemicals: A proposal for a quantitative approach and experimental results. Toxicology 19: 229–238.

    Google Scholar 

  • Kooijman SALM (1987) A safety factor for LC50. values allowing for differences in sensitivity among species Wat Res 21: 269–276.

    CAS  Google Scholar 

  • Kooijman SALM, Bedaux JJM (1996a) Analysis of toxicity tests on fish growth. Wat Res 30: 1633–1644.

    CAS  Google Scholar 

  • Kooijman SALM, Bedaux JJM (1996b) Analysis of toxicity tests on Daphnia. survival and reproduction Wat Res 30: 1711–1723.

    CAS  Google Scholar 

  • Kooijman SALM (1993) Dynamic Energy Budgets in biological systems. Theory and applications in ecotoxicology. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Kooijman SALM, Hanstveit AO, Nyholm N (1996) No-effect concentrations in algal growth inhibition tests. Wat Res 30: 1625–1632.

    Google Scholar 

  • Kratzer CR, Zamora C, Knifong DL (2002) Diazinon and chlorpyrifos loads in the San Joaquin River Basin, California. January and February 2000. United States Geological Survey, Water-Resources Investigations Report 02–4103.

    Google Scholar 

  • Kraufvelin P (1999) Baltic hard bottom mesocosms unplugged: Replicability, repeatability and ecological realism examined by non-parametric multivariate techniques. J Exp Mar Biol Ecol 240: 229–258.

    Google Scholar 

  • Kuivila KM, Barnett HD, Edmunds JL (1999) Herbicide concentrations in the Sacramento-San Joaquin Delta, California. United States Geological Survey, Water-Resources Investigations Report 99–4018 B.

    Google Scholar 

  • La Point TW, Belanger SE, Crommentuijn T, Goodrich-Mahoney J, Kent RA, Mount DI, Spry DJ, Vigerstad T, Di toro DM, Keating FJ Jr, Reiley MC (2003) Problem Formulation. In: Reevaluation of the State of the Science for Water-Quality Criteria Development. SETAC Press, Pensacola, FL, pp 1–14.

    Google Scholar 

  • LAWA (1997) Zielvorgaben sum Schutz oberirdischer Binnengewässer. Band 1. Länderarbeitsgemeinschaft Wasser. Kulturbuchverlag Berlin GmbH, Berlin.

    Google Scholar 

  • Lawton JH (1994) What do species do in ecosystems? Oikos 71: 367–374.

    Google Scholar 

  • Lemly AD (1985) Toxicology of selenium in a freshwater reservoir: Implications for environmental hazard evaluation and safety. Ecotox Environ Saf 10: 314–348.

    CAS  Google Scholar 

  • Lepper P (2002) Towards the derivation of quality standards for priority substances in the context of the Water Framework Directive. Final Report of the Study Contract No. B4–3040/2000/30673/MAR/E1. Fraunhofer-Institute Molecular biology and Applied Ecology, Munich.

    Google Scholar 

  • Lillebo HP, Shaner S, Carlson D, Richard N (1988) Water quality criteria for selenium and other trace elements for protection of aquatic life and its uses in the San Joaquin Valley. In: Technical Committee Report: Regulation of agricultural drainage to the San Joaquin River. Appendix D. California State Water Resources Control Board, Sacramento, CA.

    Google Scholar 

  • LOGKOW (1994) LOGKOW octanol-water partition coefficient program. Now called KowWin. Available at http://www.syrres.com/esc/est_soft.htm. Syracuse Research Corporation, New York, NY.

    Google Scholar 

  • Loonen H, Parsons JR, Govres HAJ (1991) Dietary accumulation of PCDDs and PCDFs in guppies. Chemosphere 23: 1349–1357.

    Google Scholar 

  • Lydy M, Belden J, Wheelock C, Hammock B, Denton D (2004) Challenges in regulating pesticide mixtures. Ecol Soc 9: 1 [online] URL: http://www.ecologyandsociety.org/vol9/iss6/art1/.

    Google Scholar 

  • Maboeta MS, Reinecke SA, Reinecke AJ (2003) Linking lysosomal biomarker and population responses in a field population of Aporrectodea caliginosa. (Oligochaaeta) exposed to the fungicide copper oxychloride Ecotox Environ Saf 56: 411–418.

    CAS  Google Scholar 

  • Mackay D, Shiu W-Y, Ma K-C (1992) Illustrated handbook of physical-chemical properties and environmental fate for organic chemical. Volume I. Monoaromatic hydrocarbons, chlorobenzenes, and PCBs. Lewis Publishers, Boca Raton, USA.

    Google Scholar 

  • Mackay D, Shiu W-Y, Ma K-C (1993) Illustrated handbook of physical-chemical properties and environmental fate for organic chemical. Volume III. Volatile organic chemicals. Lewis Publishers, Boca Raton, USA.

    Google Scholar 

  • Mackay D, Shiu W-Y, Ma K-C (1995) Illustrated handbook of physical-chemical properties and environmental fate for organic chemical. Volume IV. Oxygen, nitrogen, and sulfur containing compounds. Lewis Publishers, Boca Raton, USA.

    Google Scholar 

  • Mackay D, Shiu W-Y, Ma K-C (1997) Illustrated handbook of physical-chemical properties and environmental fate for organic chemical. Volume V. Pesticide chemicals. Lewis Publishers, Boca Raton, USA.

    Google Scholar 

  • Mackay D, Shiu W-Y, Ma K-C (1999) Illustrated handbook of physical-chemical properties and environmental fate for organic chemical. CRC-LLC netbase, CD-rom version.

    Google Scholar 

  • Maltby L, Blake N, Brock TCM, Van Den Brink PJ (2005) Insecticide species sensitivity distributions: Importance of test species and relevance to aquatic ecosystems. Environ Toxicol Chem 24: 379–388.

    CAS  Google Scholar 

  • Matthiessen P (2000) Is endocrine disruption a significant ecological issue? Ecotoxicol 9: 21–24.

    CAS  Google Scholar 

  • Mayer FL, Krause GF, Buckler DR, Ellersieck MR, Lee G (1994) Predicting chronic lethality of chemicals to fishes from acute toxicity test data: Concepts and linear regression analysis. Environ Toxicol Chem 13: 671–678.

    CAS  Google Scholar 

  • Mayer FL, Ellersieck MR, Krause GF, Sun K, Lee G, Buckler DR (2002) Time-concentration-effect models in predicting chronic toxicity from acute toxicity data. In: Crane M, Newman MC, Chapman PF, Fenlon J (eds), Risk Assessment with Time to Event Models, Lewis Publishers, Boca Raton, FL, pp 39–67.

    Google Scholar 

  • Menconi M, Beckman J (1996) Hazard assessment of the insecticide methomyl to aquatic organisms in the San Joaquin river system. Admin. Rep. 96–6. California Department of Fish and Game, Environ. Serv. Div.. , Rancho Cordova, CA

    Google Scholar 

  • Mensink BJWG, Montforts M, Wijkhuizen-Maslankiewicz L, Tibosch H, Linders JBHJ (1995) Manual for summarizing and evaluating the environmental aspects of pesticides. Report no. 67101022. National Institute of Public Health and Environmental Protection (RIVM), Bilthoven, The Netherlands.

    Google Scholar 

  • MHSPE (1994) Environmental Quality Objectives in the Netherlands: A Review of Environmental Quality Objectives and Their Policy Framework in the Netherlands. Ministry of Housing, Spatial Planning and the Environment, The Hague.

    Google Scholar 

  • MITI (1992) Biodegradation and bioaccumulation data on existing data based on the CSCL Japan. Japan Chemical Industry, Ecology-Toxicology and Information Center, Ministry of International Trade and Industry. ISBN 4-89074-101-1.

    Google Scholar 

  • Moore DRJ, Caux PY (1997) Estimating low toxic effects. Environ Toxicol Chem 16: 794–801.

    CAS  Google Scholar 

  • Mount DR, Ankley GT, Brix KV, Clements WH, Dixon DG, Fairbrother A, Hickey CW, Lanno RP, Lee CM, Munns WR, Ringer RK, Staveley JP, Wood CM, Erickson RJ, Hodson PV (2003) Effects assessment: Introduction. In: Reiley MC, Stubblefield WA, Adams WJ, Di Toro DM, Hodson PV, Erickson RJ, Keating FJ Jr (eds), Reevaluation of the State of the Science for Water-Quality Criteria Development, SETAC Press, Pensacola, FL.

    Google Scholar 

  • Murray FJ, Smith FA, Nitschke KD, Humiston CG, Kociba RJ, Schwetz BA (1979) Three generation reproduction study of rats given 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the diet. Toxicol Appl Pharmacol 50: 241–252.

    CAS  Google Scholar 

  • Nabholz JV (1991) Environmental hazard and risk assessment under the United States Toxic Substances Control Act. Sci Total Environ 109/110: 649–665.

    Google Scholar 

  • Nabholz JV (2003) Toxicity assessment, risk assessment, and risk management of chemicals under TSCA in USA. Office of Pollution Prevention and Toxics, United States Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Newman MC, Aplin M (1992) Enhancing toxicity data interpretation and prediction of ecological risk with survival time modeling: An illustration using sodium chloride toxicity to mosquitofish (Gambusia holbrooki). Aquatic Toxicol 23: 85–96.

    CAS  Google Scholar 

  • Newman MC, McCloskey JT (1996) Time-to-event analysis of ecotoxicity data. Ecotoxicology 5: 187–196.

    Google Scholar 

  • Newman MC, Crane M (2002) Introduction to time to event methods. In: Crane M, Newman MC, Chapman PF, Fenlon J (eds), Risk Assessment with Time to Event Models, Lewis Publishers, pp 1–6. , Boca Raton, FL

    Google Scholar 

  • Newman MC, Ownby DR, Mézin LCA, Powell DC, Christensen TRL, Lerberg SB, Anderson B-A (2000) Applying species-sensitivity distributions in ecological risk assessment: Assumptions of distribution type and sufficient numbers of species. Ecotoxicol Environ Chem 19: 508–515.

    CAS  Google Scholar 

  • Newman MC, Ownby DR, Mézin LCA, Powell DC, Christensen TRL, Lerberg SB, Anderson B-A, Padma TV (2002) Species sensitivity distributions in ecological risk assessment: Distributional assumptions, alternate bootstrap techniques, and estimation of adequate number of species. In: Posthuma L, Suter GW, IITraas TP , Species Sensitivity Distributions in Ecotoxicology, Lewis Publishers, CRC Press, New York, NY.

    Google Scholar 

  • Nikunen E, Leinonen R, Kultamaa A (1990) Environmental properties of chemicals. Ministry of the Environment, Research report 91, Finland.

    Google Scholar 

  • Norstrom RJ, McKinnon AE, De Freitas ASW (1976) A bioenergetics-based model for pollutant accumulations by fish. Simulation of PCB and methylmercury in Ottawa River yellow perch Perca flavescens. J Fish Res Board Can 33: 248–267.

    CAS  Google Scholar 

  • North Carolina Department of Environment and Natural Resources (2003) “Redbook” Surface Waters and Wetlands Standards. North Carolina DENR, Division of Water Quality, NC Administrative Code 15A NCAC 02 B.0100 and.0200.

    Google Scholar 

  • Novartis Crop Protection (1997) An ecological risk assessment of diazinon in the Sacramento and San Joaquin River basins. Novartis Crop Protection, Environmental and Public Affairs Department Technical Report 11/97, Greensboro, NC.

    Google Scholar 

  • OECD (1992) Fish, early-life stage toxicity test. OECD guidelines for testing of chemicals. Organization for Economic Co-operation and Development, Paris.

    Google Scholar 

  • OECD (1995) Guidance Document for Aquatic Effects Assessment. Organization for Economic Co-operation and Development, Paris.

    Google Scholar 

  • Okkerman PC, Van Den Plassche EJ, Emans HJB, Canton JH (1993) Validation of some extrapolation methods with toxicity data derived from multiple species experiments. Ecotox Environ Saf 25: 341–359.

    CAS  Google Scholar 

  • Okkerman PC, Van Den Plassche EJ, Slooff W, Van Leeuwen CJ, Canton JH (1991) Ecotoxicological effects assessment: A comparison of several extrapolation procedures. Ecotox Environ Saf 21: 182–193.

    CAS  Google Scholar 

  • Olsen T, Elerbeck L, Fisher T, Callaghan A, Crane M (2001) Variability in acetylcholinesterase and glutathione S-.transferase activities in Chironomus riparius Meigen deployed in situ at uncontaminated field sites Environ Toxicol Chem 20: 1725–1732.

    CAS  Google Scholar 

  • Parkhurst DF (1998) Arithmetic versus geometric means for environmental concentration data. Environ Sci Technol 32: 92A–98A.

    CAS  Google Scholar 

  • Pawlisz AV, Busnarda J, McLauchlin A, Caux P-Y, Kent RA (1998) Canadian water quality guidelines for deltamethrin. Environ Toxic Water 13: 175–210.

    CAS  Google Scholar 

  • Persoone G, Janssen CR (1994) Field validation of predictions based on laboratory toxicity tests. In: Hill IR, Heimbach F, Leeuwangh P, Matthiessen P (eds), Freshwater Field Tests for Hazard Assessment of Chemicals. CRC Press, Boca Raton, FL, pp 379–397.

    Google Scholar 

  • Péry ARR, Flammarion P, Vollat B, Bedaux JJM, Kooijman SALM, Garric J (2002) Using a biology-based model (DEBtox) to analyze bioassays in ecotoxicology: Opportunities and recommendations. Environ Toxicol Chem 21: 459–465.

    Google Scholar 

  • Plackett RL, Hewlett PS (1952) Quantal responses to mixtures of poisons. J Royal Stat Soc B 14: 141–163.

    Google Scholar 

  • Posthuma L, Traas TP, Suter GW III (2002a) General introduction to species sensitivity distributions. In: Posthuma L, Suter GW, Traas TP III Species Sensitivity Distributions in Ecotoxicology, Lewis Publishers, CRC Press, Boca Raton, FL, pp 3–10.

    Google Scholar 

  • Posthuma L, Traas TP, De Zwart D, Suter GW II (2002b) Conceptual and technical outlook on species sensitivity distributions. In: Posthuma L, Suter GW, IITraas TP Species Sensitivity Distributions in Ecotoxicology, Lewis Publishers, CRC Press, Boca Raton, FL, pp 475–508.

    Google Scholar 

  • Pusey BJ, Arthington AH, McClean J (1994) The effects of a pulsed application of chlorpyrifos on macroinvertebrate communities in an outdoor artificial stream system. Ecotox Environ Saf 27: 221–250.

    CAS  Google Scholar 

  • Qiao P, Gobas FAPC, Farrell AP (2000) Relative contributions of aqueous and dietary uptake of hydrophobic chemicals to the body burden in juvenile rainbow trout. Environ Contam Toxicol 39: 369–377.

    CAS  Google Scholar 

  • Ramos EU, Vaes WHJ, Verhaar HJM, Hermens JLM (1998) Quantitative structure-activity relationships for the aquatic toxicity of polar and nonpolar narcotic pollutants. J Chem Informat Comput Sci 38: 845–852.

    CAS  Google Scholar 

  • Reiley MC, Stubblefield WA, Adams WJ, Di Toro DM, Hodson PV, Erickson RJ, Keating FJ Jr (2003) Reevaluation of the state of the science for water-quality criteria development. SETAC Press, Pensacola, FL.

    Google Scholar 

  • Reynaldi S, Liess M (2005) Influence of duration of exposure to the pyrethroid fenvalerate on sublethal responses and recovery of Daphnia magna. Straus Environ Toxicol Chem 24: 1160–1164.

    CAS  Google Scholar 

  • Rider CV, LeBlanc GA (2005) An integrated addition and interaction model for assessing toxicity of chemical mixtures. Toxicol Sci 87: 520–528.

    CAS  Google Scholar 

  • Rio Convention (1992) United Nations Conference on Environment and Development: Rio Declaration on Environment and Development, June 14, 1992. Reprinted in Intl. Legal Materials 31: 874–879.

    Google Scholar 

  • RIVM (2001) Guidance document on deriving environmental risk limits in The Netherlands. Report no. 601501 012. Traas TP(ed), National Institute of Public Health and the Environment, Bilthoven, The Netherlands.

    Google Scholar 

  • RIVM (2004) ETX 2.0. Normal distribution based hazardous concentration and fraction affected. Designed by Van Vlaardingen P, Traas T, Aldenberg T, Wintersen A. National Institute of Public Health and the Environment, Bilthoven, The Netherlands.

    Google Scholar 

  • Romijn CAFM, Luttik R, Van De Meent D, Slooff W, Canton JH (1993) Presentation of a general algorithm to include effect assessment on secondary poisoning in the derivation of environmental quality criteria. Ecotox Environ Saf 26: 61–85.

    CAS  Google Scholar 

  • Roth L (1993) Wassergefärdende Stoffe. Ecomed verlag Gmbh, Landsberg/Lech.

    Google Scholar 

  • Roux DJ, Jooste SHJ, MacKay HM (1996) Substance-specific water quality criteria for the protection of South African freshwater ecosystems: Methods for derivation and initial results for some inorganic toxic substances. S African J Sci 92: 198–206.

    CAS  Google Scholar 

  • Russom CL, Bradbury SP, Broderius SJ, Hammermeister DE, Drummond RA (1997) Predicting modes of toxic action from chemical structure: Acute toxicity in the fathead minnow (Pimephales promelas.) Environ Toxicol Chem 16: 948–967.

    CAS  Google Scholar 

  • Samsoe-Petersen L, Pedersen F (eds) (1995) Water quality criteria for selected priority substances, Working Report, TI 44. Water Quality Institute, Danish Environmental Protection Agency, Copenhagen, Denmark.

    Google Scholar 

  • Sanderson H (2002) Pesticide studies—Replication of micro/mesocosm studies. Environ Sci Pollut R 6: 429–435.

    Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM (1993) Environmental organic chemistry. John Wiley and Sons, Inc , NY, USA

    Google Scholar 

  • Schulz R, Liess M (2001) Toxicity of fenvalerate to caddisfly larvae: Chronic effects of 1- vs. 10-hr pulse-exposure with constant exposures. Chemosphere 41: 1511–1517.

    Google Scholar 

  • Segner H (2005) Developmental, reproductive, and demographic alterations in aquatic wildlife: Establishing causality between exposure to endocrine-active compounds (EACs) and effects. Acta Hudrochim Hydrobiol 33: 17–26.

    CAS  Google Scholar 

  • SETAC-Europe (1992) Guidance document on testing procedures for pesticides in freshwater mesocosms. From a meeting of experts on guidelines for static field mesocosm tests, held at Monks Wood Experimental Station, Abbotts Ripton, Huntingdon, UK, 3–4 July 1991.

    Google Scholar 

  • Shao Q (2000) Estimation for hazardous concentrations based on NOEC toxicity data: An alternative approach. Envirometrics 11: 583–595.

    CAS  Google Scholar 

  • Siepmann S, Jones MR (1998) Hazard assessment of the insecticide carbaryl to aquatic organisms in the Sacramento-San Joaquin river system. Admin. Rep. 98–1. California Department of Fish and Game, Office of Spill Prevention and Response, Rancho Cordova, CA.

    Google Scholar 

  • Slooff W (1992) RIVM guidance document. Ecotoxicological effect assessment: Deriving maximum tolerable concentrations (MTC) from single-species toxicity data. Report 719102 018, RIVM Bilthoven, The Netherlands.

    Google Scholar 

  • Solomon KR, Giddings JM, Maund SJ (2001) Probabilistic risk assessment of cotton pyrethroids: I. Distributional analyses of laboratory aquatic toxicity data.Environ Toxicol Chem 20: 652–659.

    CAS  Google Scholar 

  • Solomon KR, Takacs P (2002) Probabilistic risk assessment using species sensitivity distributions. In: Posthuma L, IISuter GW, Traas TP(eds), Species Sensitivity Distributions in Ecotoxicology, Lewis Publishers, New York, NY, pp 285–314.

    Google Scholar 

  • Speijers GJA, Franken MAM, Van Leeuwen FXR, Van Egmond HP, Boot R, Loeber JG (1986) Subchronic oral toxicity study of patulin in the rat. Report 618314001. RIVM Bilthoven, The Netherlands.

    Google Scholar 

  • Spromberg JA, Birge WJ (2005a) Modeling the effects of chronic toxicity on fish populations: The influence of life-history strategies. Environ Toxicol Chem 24: 1532–1540.

    CAS  Google Scholar 

  • Spromberg JA, Birge WJ (2005b) Population survivorship index for fish and amphibians: Application to criterion development and risk assessment. Environ Toxicol Chem 24: 1541–1547.

    CAS  Google Scholar 

  • Stephan CE (1985) Are the “Guidelines for deriving numerical national water quality criteria for the protection of aquatic life and its uses” based on sound judgments? In: Cardwell RD, Purdy R, Bahner RC (eds), Aquatic Toxicology and Hazard Assessment: Seventh Symposium, ASTM STP 854, American Society for Testing and Materials, pp , Philadelphia, PA 515–526.

    Google Scholar 

  • Stephan CE, Rogers JW (1985) Advantages of using regression analysis to calculate results of chronic toxicity tests. In: Bahner RC, Hansen DJ (eds), Aquatic Toxicology and Hazard Assessment: Eighth Symposium. ASTM STP 891, American Society for Testing and Materials, Philadelphia, PA, pp 328–338.

    Google Scholar 

  • Sun K, Krause GJ, Mayer FL Jr, Ellersieck MR, Basu AP (1995) Predicting chronic lethality of chemicals to fishes from acute toxicity test data: Theory of accelerated life testing. Environ Toxicol Chem 14: 1745–1752.

    CAS  Google Scholar 

  • Suter GW II (2002) North American history of species sensitivity distributions. In: Posthuma L, Suter GW , IITraas TP (eds), Species Sensitivity Distributions in Ecotoxicology, Lewis Publishers, CRC Press, Boca Raton, FL, pp 11–17.

    Google Scholar 

  • Suter GW II, Rosen AE, Linder E, Parkhurst DF (1987) Endpoints for responses of fish to chronic toxic exposures. Environ Toxicol Chem 6: 793–809.

    CAS  Google Scholar 

  • Teh SJ, Deng DF, Werner I, Teh FC, Hung SSO (2005) Sublethal toxicity of orchard stormwater runoff in Sacramento splittail (Pogonichthys macrolepidotus.) larvae Mar Environ Res 59: 203–216.

    CAS  Google Scholar 

  • Thomann RV, Connolly JP (1984) Model of PCB in the Lake Michigan lake trout food chain. Environ Sci Technol 18: 65–71.

    CAS  Google Scholar 

  • Traas TP, Van De Meent D, Posthuma L, Hamers T, Kater BJ, De Zwart D, Aldenberg T (2002) The potentially affected fraction as a measure of ecological risk. In: Posthuma L, Suter GW , IITraas TP(eds), Species Sensitivity Distributions in Ecotoxicology, Lewis Publishers, New York, NY, pp 315–344.

    Google Scholar 

  • Traas TP, Van Wezel AP, Hermens JLM, Zorn M, Van Hattum AGM, Van Leeuwen CJ (2004) Environmental quality criteria for organic chemicals predicted form internal effect concentrations and a food web model. Environ Toxicol Chem 23: 2518–2527.

    CAS  Google Scholar 

  • Treibskorn R, Adam S, Behrens A, Beier S, Böhmer J, Braunbeck T, Casper H, Dietze U, Gernhöfer M, HOnnen W, Köhler H-R, Körner W, Konradt J, Lehmann R, Luckenbach T, Oberemm A, Schwaiger J, Segner H, Strmac M, Schüürmann G, Siligato S, Traunspurger W (2003) Establishing causality between pollution an defects at different levels of biological organization: The VALIMAR project. Hum Ecol Risk Assess 9: 171–194.

    Google Scholar 

  • USEPA (1984a) Guidelines for deriving numerical aquatic site-specific water quality criteria by modifying national criteria. EPA-600/3–84–099. US Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • USEPA (1984b) Estimating “concern levels” for concentrations of chemical substances in the environment. Environmental Effects Branch, Health and Environmental Review Division (TS-796), Office of Toxic Substances, US Environmental Protection Agency, Washington, DC 20460–0001.

    Google Scholar 

  • USEPA (1985) Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses. PB-85-227049. US Environmental Protection Agency, National Technical Information Service, Springfield, VA, USA.

    Google Scholar 

  • USEPA (1986) Guidelines for deriving ambient aquatic life advisory concentrations. EPA/822/R86/100. US Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • USEPA (1987) 40 CFR Part 797. Environmental Effects Testing Guidelines. US Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • USEPA (1991) Technical Support Document for Water Quality-Based Toxics Control. EPA/505/2-90-001. US Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • USEPA (1994) Water Quality Standards Handbook. EPA-823-B-94-005. US Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • USEPA (1993) Federal Register, 40 CFR Part 158.490.

    Google Scholar 

  • USEPA (2000) Ambient Aquatic Life Water Quality Criteria for Dissolved Oxygen (Saltwater): Cape Cod to Cape Hatteras. EPA-822-R-00–012. US Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • USEPA (2002a) Draft report on summary of proposed revisions to the aquatic life criteria guidelines. US Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • USEPA (2002b) Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organism, 4th edition. EPA-821-R-02–013. US Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • USEPA (2003a)Water quality guidance for the Great Lakes system. Federal Register, 40 CFR Part 132. US Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • USEPA (2003b) Ambient aquatic life water quality criteria for tributyltin (TBT)– Final. EPA 822-R-03-031. US Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • USEPA (2003c) Acute-to-chronic estimation (ACE v 2.0) with time-concentration-effect models, User manual and software. EPA/600/R-03/107. US Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • USEPA (2003d) Interspecies correlation estimations (ICE) for acute toxicity to aquatic organisms and wildlife. II. User manual and software. EPA/600/R-03/106. US Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • USEPA (2005) Science Advisory Board Consultation Document, Proposed Revisions to Aquatic Life Guidelines, Water-Based Criteria, Water-Based Criteria Subcommittee, US Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • USGS (1998) Pesticides in surface and ground water of the United States: Summary of the results of the National Water Quality Assessment Program (NAWQA). US Geological Survey, Washington, DC.

    Google Scholar 

  • USGS (2005a) Water Resource Data, California Water Year 2004, Volume 4, Northern Central Valley Basins and the Great Basin from Honey Lake Basin to Oregon State Line. US Geological Survey, Sacramento, CA.

    Google Scholar 

  • USGS (2005b) Water Resources Data, California Water Year 2004, Volume 3, Southern Central Valley Basins and the Great Basin from Walker River to Truckee River. US Geological Survey, Sacramento, CA.

    Google Scholar 

  • Vaal M, Van Der Wal JT, Hermens J, Hoekstra J, (1997a) Pattern analysis of the variation in the sensitivity of aquatic species to toxicants. Chemosphere 35: 1291–1309.

    CAS  Google Scholar 

  • Vaal M, Van Der Wal JT, Hoekstra J, Hermens J (1997b) Variation in the sensitivity of aquatic species in relation to the classification of environmental pollutants. Chemosphere 35: 1311–1327.

    CAS  Google Scholar 

  • Van De Meent D (1993) SIMPLEOX: A generic multimedia fate evaluation model. Report number 672702 001. National Institute of Public Health and the Environment, Bilthoven, The Netherlands.

    Google Scholar 

  • Van De Meent D, Aldenberg T, Canton JH, Van Gesteel CAM, Slooff W (1990) Desire for levels, background study for the policy document “Setting environmental quality standards for water and soil .” National Institute of Public Health and the Environment, Bilthoven, The Netherlands.

    Google Scholar 

  • Van Den Brink PJ, Roelsma J, Van Nes EH, Scheffer M, Brock TCM (2002) PERPEST model, a case-based reasoning approach to predict ecological risks of pesticides. Environ Toxicol Chem 21: 2500–2506.

    CAS  Google Scholar 

  • Van Der Hoeven N (2001) Estimating the 5-percentile of the species sensitivity distributions without any assumptions about the distribution. Ecotoxicol 10: 25–34.

    CAS  Google Scholar 

  • Van Der Hoeven N, Noppert F, Leopold A (1997) How to measure no effect. Part I: Towards a new measure of chronic toxicity in ecotoxicology. Introduction and workshop results. Environmetrics 8: 241–248.

    Google Scholar 

  • Van Der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environ Toxicol Pharm 13: 57–149.

    CAS  Google Scholar 

  • Van Leeuwen CJ, Van Der Zandt PTJ, Aldenberg T, Verhaar HJM, Hermens JLM (1992) Application of QSARs, extrapolation and equilibrium partitioning in aquatic effects assessment. I. Narcotic industrial pollutants. Environ Toxicol Chem 11: 267–282.

    CAS  Google Scholar 

  • Van Straalen NM, Denneman CAJ (1989) Ecotoxicological evaluation of soil quality criteria. Ecotox Environ Safe 18: 241–251.

    CAS  Google Scholar 

  • Van Straalen NM, Van Leeuwen CJ (2002) European history of species sensitivity distributions. In: Posthuma L, Suter GW, IITraas TP (eds), Species Sensitivity Distributions in Ecotoxicology, Lewis Publishers, CRC Press, Boca Raton, FL, pp 19–34.

    Google Scholar 

  • Verhaar HJM, Van Leeuwen CJ, Hermens JLM (1992) Classifying environmental pollutants. 1: Structure-activity relationships for prediction of aquatic toxicity. Chemosphere 25: 471–491.

    CAS  Google Scholar 

  • Verscheuren K (1983) Handbook of environmental data on organic chemicals, 2nd Ed., Van Nostrand Reinhold Co., New York, NY.

    Google Scholar 

  • Verscheuren K (2001) Handbook of environmental data on organic chemicals, 4th Ed., CD-ROM, Wiley Interscience, New York, NY.

    Google Scholar 

  • Versteeg DJ, Belanger SE, Carr GJ (1999) Understanding single-species and model ecosystem sensitivity: Data-based comparison. Environ Toxicol Chem 18: 1329–1346.

    CAS  Google Scholar 

  • VROM (1994) Environmental quality objectives in The Netherlands. Ministry of Housing, Spatial Planning and Environment, The Hague, The Netherlands.

    Google Scholar 

  • Wagner C, Løkke H (1991) Estimation of ecotoxicological protection levels from NOEC toxicity data. Wat Res 25: 1237–1242.

    CAS  Google Scholar 

  • Warmer H, Van Dokkum R (2002) Water pollution control in the Netherlands, Policy and Practice. RIZA report 2002.009.

    Google Scholar 

  • Warne MSJ, Hawker DW (1995) The number of components in a mixture determines whether synergistic and antagonistic or additive toxicity predominate: The funnel hypothesis. Ecotox Environ Safety 31: 23–28.

    CAS  Google Scholar 

  • Webster’s New Collegiate Dictionary (1976) G. & C. Merriam Co., Springfield, MA.

    Google Scholar 

  • Werner I, Deanovic LA, Connor V, de Vlaming V, Bailey HC, Hinton DE (2000) Insecticide-caused toxicity to Ceriodaphnia dubia. (cladocera) in the Sacramento-San Joaquin River Delta, California, USA Environ Toxicol Chem, 19: 215–227.

    CAS  Google Scholar 

  • Wheeler JR, Grist EPM, Leung KMY, Morritt D, Crane M (2002) Species sensitivity distributions: Data and model choices. Marine Pollut Bull 45: 192–202.

    CAS  Google Scholar 

  • Whitehouse P, Crane M, Grist E, O’Hagan A, Sorokin N (2004) Derivation and expression of water quality standards; opportunities and constraints in adopting risk-based approaches in EQS setting. RandD technical Report P2–157/TR. Environment Agency, Rio House, Almondsbury, Bristol.

    Google Scholar 

  • Wu J, Laird DA (2004) Interactions of chlorpyrifos with colloidal materials in aqueous systems. J Environ Qual 33: 1765–1770.

    CAS  Google Scholar 

  • Zabel TF, Cole S (1999) The derivation of environmental quality standards for the protection of aquatic life in the UK. J CIWEM 13: 436–440.

    Google Scholar 

  • Zischke JA, Arthur JW, Hermanutz RO, Hedtke SF, Helgen JC (1985) Effects of pentachlorophenol on invertebrates and fish in outdoor experimental channels. Aquat Toxicol 7: 37–58.

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the following reviewers: Lawrence R. Curtis (Oregon State University), Brian Finlayson (California Department of Fish and Game), Evan P. Gallagher (University of Washington), John P. Knezovich (Lawrence Livermore National Laboratory), and Marshall Lee (California Department of Pesticide Regulation). This project was funded through a contract with the Central Valley RWQCB. Mention of specific products, policies, or procedures does not represent endorsement by the Regional Board. The contents also do not necessarily reflect the views or policies of the USEPA nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald S. Tjeerdema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

TenBrook , P.L., Tjeerdema, R.S., Hann, P., Karkoski, J. (2008). Methods for Deriving Pesticide Aquatic Life Criteria. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology Volume 199. Reviews of Environmental Contamination and Toxicology, vol 199. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09808-1_2

Download citation

Publish with us

Policies and ethics