Skip to main content

cAMP Oscillations during Aggregation of Dictyostelium

  • Chapter
Cellular Oscillatory Mechanisms

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 641))

Abstract

For many years it has been known that developing cells of Dictyostelium discoideum show periodic surges as they aggregate. When it was discovered that the cells were responding chemotactically to cAMP gradients produced within the populations, experiments were carried out that demonstrated similar periodic changes in the concentration of extracellular cAMP. Moreover, homogenous populations of developed cells held in suspension could be shown to respond to cAMP by changes in cell shape. Such suspensions showed spontaneous oscillations in light scattering as well as cAMP levels as the result of entrainment of the cells. The molecular components necessary for the pulsatile release of cAMP were uncovered by analyzing the behavior of a large number of strains with defined mutations isolated from saturation mutagenic screens. Subsequent genetic and biochemical studies established the connections between a dozen proteins essential for spontaneous oscillations. Computer simulations of a molecular circuit based on these results showed that it is able to account for the temporal and quantitative aspects of the oscillatory system. The circuit also appears to be coupled to the construction and dismantling of the actin/myosin cortical layer that ensures that pseudopods are restricted to the anterior of cells during chemotaxis and that the cells do not back-track when the natural wave is behind them. Since the same molecular clock controls both signal production and signal response, these behaviors are always kept strictly in phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dyachok O, Isakov Y, Sagetorp J et al. Oscillations of cyclic AMP in hormone-stimulated insulin-secreting beta-cells. Nature 2006; 439:349–352.

    Article  PubMed  CAS  Google Scholar 

  2. Navarro C, Saeed S, Murdock C et al. Regulation of cyclic adenosine 3′, 5′-monophosphate signaling and pulsatile neurosecretion by Gi-coupled plasma membrane estrogen receptors in immortalized gonadotrophin-releasing hormone neurons. Mol Endocrinol 2003; 17:1792–1804.

    Article  CAS  Google Scholar 

  3. Wetsel W, Valenca M, Merchenthaler I et al. Intrinsic pulsatile secretory activity of immortalized luteinizing hormone-releasing hormone-secreting neurons. Proc Natl Acad Sci 1992; 89:4149–4153.

    Article  PubMed  CAS  Google Scholar 

  4. Baillie G, MacKenzie S, Houslay M. Phorbol 12-myristate 13-acetate triggers the protein kinase A-mediated phosphorylation and activation of the PDE4D5 cAMP phosphodiesterase in human aortic smooth muscle cells through a route involving extracellular signal regulated kinase (ERK). Mol Pharmacol 2001; 60:1100–1111.

    PubMed  CAS  Google Scholar 

  5. Konijn TM, van de Meene JGC, Bonner JT et al. The acrasin activity of adenosine-3′, 5′-cyclic phosphate. Proc Natl Acad Sci USA 1967; 58:1152–1154.

    Article  PubMed  CAS  Google Scholar 

  6. Loomis WF. Role of PKA in the timing of developmental events in Dictyostelium cells. Microbiol Mol Biol Rev 1998; 62:684.

    PubMed  CAS  Google Scholar 

  7. Laub MT, Loomis WF. A molecular network that produces spontaneous oscillations in excitable cells of Dictyostelium. Mol Biol Cell 1998; 9:3521–3532.

    PubMed  CAS  Google Scholar 

  8. Maeda M, Lu SJ, Shaulsky G et al. Periodic signaling controlled by an oscillatory circuit that includes protein kinases ERK2 and PKA. Science 2004; 304:875–878.

    Article  PubMed  CAS  Google Scholar 

  9. Martiel JL, Goldbeter A. A model based on receptor desensitization for cyclic AMP signaling in Dictyostelium cells. Biophys J 1987; 52:807–828.

    Article  CAS  PubMed  Google Scholar 

  10. Parent CA, Devreotes PN. Molecular genetics of signal transduction in Dictyostelium. Annu Rev Biochem 1996; 65:411–440.

    Article  PubMed  CAS  Google Scholar 

  11. Loomis WF, Smith DW. Molecular phylogeny of Dictyostelium dscoideum by protein sequence comparison. Proc Natl Acad Sci USA 1990; 87:9093–9097.

    Article  PubMed  CAS  Google Scholar 

  12. Song J, Olsen R, Loomis WF et al. Comparing the Dictyostelium and Entamoeba genomes reveals an ancient split in the Conosa lineage. PLoS Comput Biol 2005; 1:579–584.

    Article  CAS  Google Scholar 

  13. Iranfar N, Fuller D, Loomis WF. Genome-wide expression analyses of gene regulation during early development of Dictyostelium discoideum. Euk Cell 2003; 2:664–670.

    Article  CAS  Google Scholar 

  14. Kumagai A, Hadwiger JA, Pupillo M et al. Molecular genetic analysis of two Galpha protein subunits in Dictyostelium. J Biol Chem 1991; 266:1220–1228.

    PubMed  CAS  Google Scholar 

  15. Segall JE, Kuspa A, Shaulsky G et al. A MAP kinase necessary for receptor-mediated activation of adenylyl cyclase in Dictyostelium. J Cell Biol 1995; 128:405–413.

    Article  PubMed  CAS  Google Scholar 

  16. Levine H, Aranson I, Tsimring L et al. Positive genetic feedback governs cAMP spiral wave formation in Dictyostelium. Proc Natl Acad Sci USA 1996; 93:6382–6386.

    Article  PubMed  CAS  Google Scholar 

  17. Aubry L, Maeda M, Insall R et al. The Dictyostelium mitogen-activated protein kinase ERK2 is regulated by ras and cAMP-dependent protein kinase (PKA) and mediates PKA function. J Biol Chem 1997; 272:3883–3886.

    Article  PubMed  CAS  Google Scholar 

  18. Shaulsky G, Fuller D, Loomis WF. A cAMP-phosphodiesterase controls PKA-dependent differentiation. Development 1998; 125:691–699.

    PubMed  CAS  Google Scholar 

  19. Sawai S, thomason PA, Cox EC. An autoregulatory circuit for long-range self-organization in Dictyostelium cell populations. Nature 2005; 433:323–326.

    Google Scholar 

  20. Gerisch G, Hess B. Cyclic-AMP-controlled oscillations in suspended Dictyostelium cells: Their relation to morphogenetic cell interactions. Proc Natl Acad Sci USA 1974; 71:2118–2122.

    Article  PubMed  CAS  Google Scholar 

  21. Gerisch G, Malchow D, Roos W et al. Oscillations of cyclic nucleotide concentrations in relation to the excitability of Dictyostelium cells. J exp Biol 1979; 81:33–47.

    PubMed  CAS  Google Scholar 

  22. Winfree A. Phase control of neural pacemakers. Science 1977; 197:761–763.

    Article  PubMed  CAS  Google Scholar 

  23. Mohanty S, Lee S, Yadava N et al. Regulated protein degradation controls PKA function and cell-type differentiation in Dictyostelium. Genes Devel 2001; 15:1435–1448.

    Article  PubMed  CAS  Google Scholar 

  24. Boeckeler K, Adley K, Xu X et al. The neuroprotective agent, valproic, acid, regulates the mitogen-activated protein kinase pathway through modulation of protein kinase A signalling in Dictyostelium discoideum. Eur J Cell Biol 2006; 85:1097–1057.

    Article  CAS  Google Scholar 

  25. Brzostowski JA, Parent CA, Kimmel AR. A Galpha-dependent pathway that antagonizes multiple chemoattractant responses that regulate directional cell movement. Genes Devel 2004; 18:805–815.

    Article  PubMed  CAS  Google Scholar 

  26. Comer F, Parent CA. Phosphoinositide 3-kinase activity controls the chemoattractant-mediated activation and adaptation of adenylyl cyclase. Mol Biol Cell 2006; 17:357–366.

    Article  PubMed  CAS  Google Scholar 

  27. Devreotes PN, Zigmond SH. Chemotaxis in eukaryotic cells: A focus on leukocytes and Dictyostelium. Annu Rev Cell Biol 1988; 4:649–686.

    Article  PubMed  CAS  Google Scholar 

  28. Soll DR, Wessels D, Heid PJ et al. A contextual framework for characterizing motility and chemotaxis mutants in Dictyostelium discoideum. J Muscle Res Cell Motil 2002; 23:659–672.

    Article  PubMed  CAS  Google Scholar 

  29. Wessels D, Voss E, Von Bergen N et al. A computer-assisted system for reconstructing and interpreting the dynamic three-dimensional relationships of the outer surface, nucleus and pseudopods of crawling cells. Cell Motil Cytoskel 1998; 41:225–246.

    Article  CAS  Google Scholar 

  30. Wessels DJ, Zhang H, Reynolds J et al. The internal phosphodiesterase RegA is essential for the suppression of lateral pseudopods during Dictyostelium chemotaxis. Mol Biol Cell 2000; 11:2803–2820.

    PubMed  CAS  Google Scholar 

  31. Stepanovic V, Wessels D, Daniels K et al. Intracellular role of adenylyl cyclase in regulation of lateral pseudopod formation during Dictyostelium chemotaxis. Euk Cell 2005; 4:775–786.

    Article  CAS  Google Scholar 

  32. Zhang H, Heid PJ, Wessels D et al. Constitutively active protein kinase A disrupts motility and chemotaxis in Dictyostelium discoideum. Euk Cell 2003; 2:62–75.

    Article  CAS  Google Scholar 

  33. Yumura S, Yoshida M, Betapudi V et al. Multiple myosin II heavy chain kinases: Roles in filament assembly control and proper cytokinesis in Dictyostelium. Mol Biol Cell 2005; 16:4256–4266.

    Article  PubMed  CAS  Google Scholar 

  34. Heid PJ, Wessels D, Daniels KJ et al. The role of myosin heavy chain phosphorylation in Dictyostelium motility, chemotaxis and F-actin localization. J Cell Sci 2004; 117:4819–4835.

    Article  PubMed  CAS  Google Scholar 

  35. Behrens MM, Juliani MH, Maia JCC. Periodic changes in the cAMP-dependent protein kinase activity ratio in Dictyostelium discoideum. Biochem Internat 1986; 13:221–226.

    CAS  Google Scholar 

  36. Janetopoulos C, Jin T, Devreotes P. Receptor-mediated activation of heterotrimeric G-proteins in living cells. Science 2001; 291:2408–2411.

    Article  PubMed  CAS  Google Scholar 

  37. Geiger J, Wessels D, Soll DR. Human polymorphonuclear leukocytes respond to wave of chemoattractant, like Dictyostelium. Cell Motil Cytoskel 2003; 56:27–44.

    Article  Google Scholar 

  38. Song L, Nadkarni S, Bodeker H et al. Dictyostelium discoideum chemotaxis: Threshold for directed motion. Eur J Cell Biol 2006; 85:981–989.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Loomis, W.F. (2008). cAMP Oscillations during Aggregation of Dictyostelium . In: Maroto, M., Monk, N.A.M. (eds) Cellular Oscillatory Mechanisms. Advances in Experimental Medicine and Biology, vol 641. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09794-7_3

Download citation

Publish with us

Policies and ethics