Skip to main content

Abstract

Many antigen receptors of the immune system belong to the family of multichain immune recognition receptors (MIRRs). Binding of ligand (antigen) to MIRR results in receptor phosphorylation, triggering downstream signaling pathways and cellular activation. How ligand binding induces this phosphorylation is not yet understood. In this Chapter, we discuss two models exploring the possibihty that kinases and phosphatases are intermingled on the cell surface. Thus, in resting state, MIRR phosphorylation is counteracted by dephosphorylation. Upon ligand binding, phosphatases are removed from the vicinity of the MIRR and kinases, such that phosphorylated MIRRs can accumulate (segregation models). In the first model, clustering of MIRRs by multivalent hgand leads to their concentration in lipid rafts where kinases, but not phosphatases, are localized. The second model takes into account that the MIRR-ligand pair needs close apposition of the two cell membranes, in cases where ligand is presented by an antigen-presenting cell. The intermembrane distance is too small to accommodate transmembrane phosphatases, which possess large ectodomains. Thus, phosphatases become spatially separated from the MIRRs and kinases (kinetic-segregation model).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reth M. Antigen receptor tail clue. Nature 1989; 338:383.

    Article  PubMed  CAS  Google Scholar 

  2. Iwashima M, Irving BA, van Oers NS et al. Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. Science 1994; 263(5150):1136–1139.

    Article  PubMed  CAS  Google Scholar 

  3. Rolli V, Gallwitz M, Wossning T et al. Amplification of B-cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol Cell 2002; 10(5): 1057–1069.

    Article  PubMed  CAS  Google Scholar 

  4. Gil D, Schamel WW, Montoya M et al. Recruitment of Nek by CD3 epsilon reveals a ligand-induced conformational change essential for T-cell receptor signaling and synapse formation. Cell 2002; 109(7):901–912.

    Article  PubMed  CAS  Google Scholar 

  5. Schamel WW, Risueno RM, Minguet S et al. A conformation-and avidity-based proofreading mechanism for the TCR-CD3 complex. Trends Immunol 2006; 27:176–182.

    Article  PubMed  CAS  Google Scholar 

  6. Cochran JR, Aivazian D, Cameron TO et al. Receptor clustering and transmembrane signaling in Tcells. Trends Biochem Sci 2001; 26(5):304–310.

    Article  PubMed  CAS  Google Scholar 

  7. Secrist JP, Burns LA, Karnitz L et al. Stimulatory effects of the protein tyrosine phosphatase inhibitor, pervanadate, on T-cell activation events. J Biol Chem 1993; 268(8):5886–5893.

    PubMed  CAS  Google Scholar 

  8. Wienands J, Larbolette O, Reth M. Evidence for a preformed transducer complex organized by the B-ceil antigen receptor. Proc Nad Acad Sci USA 1996; 93(15):7865–7870.

    Article  CAS  Google Scholar 

  9. Cooper JA, MacAuley A. Potential positive and negative autoregulation of p60c-src by intermolecular autophosphorylation. Proc Nad Acad Sci USA 1988; 85(12):4232–4236.

    Article  CAS  Google Scholar 

  10. Trowbridge IS, Thomas ML. CD45: An emerging role as a protein tyrosine phosphatase required ft)r lymphocyte activation and development. Annu Rev Immunol 1994; 12:85–116.

    Article  PubMed  CAS  Google Scholar 

  11. Reth M. Hydrogen peroxide as second messenger in lymphocyte activation. Nat Immunol 2002; 3(12):1129–1134.

    Article  PubMed  CAS  Google Scholar 

  12. Davis SJ, van der Merwe PA. The structure and ligand interactions of CD2: Implications ft)r T-cell function. Immunol Today 1996; 17(4): 177–187.

    Article  PubMed  CAS  Google Scholar 

  13. Shaw AS, Dustin ML. Making the T-cell receptor go the distance: A topological view of T-cell activation. Immunity 1997; 6(4):361–369.

    Article  PubMed  CAS  Google Scholar 

  14. Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science 1972; 175(23):720–731.

    Article  Google Scholar 

  15. Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 387(6633):569–572.

    Article  PubMed  CAS  Google Scholar 

  16. Wenk MR. The emerging field of lipidomics. Nat Rev Drug Discov 2005; 4(7):594–610.

    Article  PubMed  CAS  Google Scholar 

  17. Fridriksson EK, Shipkova PA, Sheets ED et al. Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem high-resolution mass spectrometry. Biochemistry 1999; 38(25):8056–8063.

    Article  PubMed  CAS  Google Scholar 

  18. Janes PW, Ley SC, Magee AL Aggregation of lipid rafts accompanies signaling via the T-cell antigen receptor. J Cell Biol 1999; 147(2):447–461.

    Article  PubMed  CAS  Google Scholar 

  19. Drevot P, Langlet C, Guo XJ et al. TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. EMBO J 2002; 21(8):1899–1908.

    Article  PubMed  CAS  Google Scholar 

  20. Xavier R, Brennan T, Li Q et al. Membrane compartmentation is required for efficient T-cell activation. Immunity 1998; 8:723–732.

    Article  PubMed  CAS  Google Scholar 

  21. Montixi C, Langlet C, Bernard AM et al. Engagement of T-cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J 1998; 17(18):5334–5348.

    Article  PubMed  CAS  Google Scholar 

  22. Field KA, Holowka D, Baird B. Compartmentalized activation of the high affinity immunoglobulin E receptor within membrane domains. J Biol Chem 1997; 272(7):4276–4280.

    Article  PubMed  CAS  Google Scholar 

  23. Cheng PC, Dykstra ML, Mitchell RN et al. A role for lipid rafts in B-cell antigen receptor signaling and antigen targeting. J Exp Med 1999; 190(11):1549–1560.

    Article  PubMed  CAS  Google Scholar 

  24. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 2000; 1(1):31–39.

    Article  PubMed  CAS  Google Scholar 

  25. Langlet C, Bernard AM, Drevot P et al. Membrane rafts and signaling by the multichain immime recognition receptors. Curr Opin Immunol 2000; 12(3):250–255.

    Article  PubMed  CAS  Google Scholar 

  26. Kabouridis PS, Magee AI, Ley SC. S-acylation of LCK protein tyrosine kinase is essential for its signalling function in T-lymphocytes. EMBO J 1997; 16(16):4983–4998.

    Article  PubMed  CAS  Google Scholar 

  27. Munro S. Lipid rafts:elusive or illusive? Cell 2003; 115(4):377–388.

    Article  PubMed  CAS  Google Scholar 

  28. Janes PW, Ley SC, Magee AI et al. The role of lipid rafts in T-cell antigen receptor (TCR) signalling. Semin Immunol 2000; 12(1):23–34.

    Article  PubMed  CAS  Google Scholar 

  29. Lanzavecchia A, Lezzi G, Viola A. From TCR engagement to T-cell activation: A kinetic view of T-cell behavior. Cell 1999; 96(1):1–4.

    Google Scholar 

  30. Garboczi DN, Ghosh P, Utz U et al. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 1996; 384(6605):134–141.

    Article  PubMed  CAS  Google Scholar 

  31. Garcia KC, Degano M, Stanfield RL et al. An a P T-cell receptor structure at 2.5 A and its orientation in the TCR-MHC complex. Science 1996; 274(5285):209–219.

    Article  PubMed  CAS  Google Scholar 

  32. Davis SJ, van der Merwe PA. The kinetic-segregation model: TCR triggering and beyond. Nat Immunol 2006; 7(8):803–809.

    Article  PubMed  CAS  Google Scholar 

  33. Davis MM, Boniface JJ, Reich Z et al. Ligand recognition by a P T-cell receptors. Annu Rev Immunol1998; 16:523–544.

    Article  PubMed  CAS  Google Scholar 

  34. Yokosuka T, Sakata-Sogawa K, Kobayashi W et al. Newly generated T-cell receptor microclusters initiate and sustain T-cell activation by recruitment of Zap70 and SLP-76. Nat Immunol 2005; 6(12):1253–1262.

    Article  PubMed  CAS  Google Scholar 

  35. Lin J, Weiss A. The tyrosine phosphatase CD 148 is excluded from the immunologic synapse and down-regulates prolonged T-cell signaling. J Cell Biol 18 2003; 162(4):673–682.

    Article  CAS  Google Scholar 

  36. Choudhuri K, Wiseman D, Brown MH et al. T-cell receptor triggering is critically dependent on the dimensions of its peptide-MHC ligand. Nature 2005; 436(7050):578–582.

    Article  PubMed  CAS  Google Scholar 

  37. Irles C, Symons A, Michel F et al. CD45 ectodomain controls interaction with GEMs and Lck activity for optimal TCR signaling. Nat Immunol 2003; 4(2):189–197.

    Article  PubMed  CAS  Google Scholar 

  38. Varma R, Campi G, Yokosuka T et al. T-cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 2006; 25(1):117–127.

    Article  PubMed  CAS  Google Scholar 

  39. Batista FD, Iber D, Neuberger MS. B-cells acquire antigen from target cells after synapse formation. Nature 2001; 411(6836):489–494.

    Article  PubMed  CAS  Google Scholar 

  40. Chang TW, Kung PC, Gingras SP et al. Does OKT3 monoclonal antibody react with an antigenrecognition structure on human T-cells? Proc Natl Acad Sci USA 1981; 78(3):1805–1808.

    Article  PubMed  CAS  Google Scholar 

  41. Kaye J, Janeway CA Jr. The Fab fragment of a directly activating monoclonal antibody that precipitates a disulfide-linked heterodimer from a helper T-cell clone blocks activation by either allogeneic la or antigen and self-la. J Exp Med 1984; 159(5):1397–1412.

    Article  PubMed  CAS  Google Scholar 

  42. Boniface JJ, Rabinowitz JD, Wiilfing C et al. Initiation of signal transduction through the T-cell receptor requires the peptide multivalent engagement of MHC ligands. Immimity 1998; 9:459–466.

    Article  CAS  Google Scholar 

  43. Cochran JR, Cameron TO, Stern LJ. The relationship of MHC-peptide binding and T-cell activation probed using chemically defined MHC class II oligomers. Immunity 2000; 12(3):241–250.

    Article  PubMed  CAS  Google Scholar 

  44. Krogsgaard M, Li QJ, Sumen C et al. Agonist/endogenous peptide-MHC heterodimers drive T-cell activation and sensitivity. Nature 2005; 434(7030):238–243.

    Article  PubMed  CAS  Google Scholar 

  45. Monks CR, Freiberg BA, Kupfer H et al. Three-dimensional segregation of supramolecular activation clusters in T-cells. Nature 1998; 395(6697): 82–86.

    Article  PubMed  CAS  Google Scholar 

  46. Grakoui A, Bromley SK, Sumen C et al. The immunological synapse: A molecular machine controlling T-cell activation. Science 1999; 285(5425):221–227.

    Article  PubMed  CAS  Google Scholar 

  47. Carrasco YR, Batista FD. B-cell recognition of membrane-bound antigen: An exquisite way of sensing ligands. Curr Opin Immunol 2006; 18(3):286–291.

    Article  PubMed  CAS  Google Scholar 

  48. Lee KH, Holdorf AD, Dustin ML et al. T-cell receptor signaling precedes immunological synapse formation. Science 2002; 295(5559):1539–1542.

    Article  PubMed  CAS  Google Scholar 

  49. Freiberg BA, Kupfer H, Maslanik W et al. Staging and resetting T-cell activation in SMACs. Nat Immunol 2002; 3(10):911–917.

    Article  PubMed  CAS  Google Scholar 

  50. Lee KH, Dinner AR, Tu C et al. The immunological synapse balances T-cell receptor signaling and degradation. Science 2003; 302(5648): 1218–1222.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Dopfer, E.P., Swamy, M., Siegers, G.M., Molnar, E., Yang, J., Schamel, W.W.A. (2008). Segregation Models. In: Sigalov, A.B. (eds) Multichain Immune Recognition Receptor Signaling. Advances in Experimental Medicine and Biology, vol 640. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09789-3_7

Download citation

Publish with us

Policies and ethics