Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 640))

Abstract

The aggregation of cell surface Fc receptors by immune complexes induces a number of important antibody-dependent effector functions. It is becoming increasingly evident that the organization of key immune proteins has a significant impact on the function of these proteins. Comparatively little is known, however, about the nature of Fc receptor spatiotemporal organization. This review outlines the current literature concerning human Fc receptor spatial organization and physiological function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Hulett MD, Hogarth PM. Molecular basis of Fc receptor function. Adv Immunol 1994; 57:1–127.

    Article  PubMed  CAS  Google Scholar 

  2. Daeron M. Fc receptor biology. Annu Rev Immunol 1997; 15:203–234.

    Article  PubMed  CAS  Google Scholar 

  3. Ravetch JV, Bolland S. IgG Fc receptors. Annu Rev Immunol 2001; 19:275–290.

    Article  PubMed  CAS  Google Scholar 

  4. Kinet J. The high-affinity IgE receptor (Fc epsilon RI): From physiology to pathology. Annu Rev Immunol 1999; 17:931–972.

    Article  PubMed  CAS  Google Scholar 

  5. Wines BD, Hogarth PM. IgA receptors in health and disease. Tissue Antigens 2006; 68:103–114.

    Article  PubMed  CAS  Google Scholar 

  6. Gomes MM, Herr AB. IgA and IgA-specific receptors in human disease: Structural and functional insights into pathogenesis and therapeutic potential. Springer Semin Immunopathol 2006.

    Google Scholar 

  7. Reth M. Antigen receptor tail clue. Nature 1989; 338:383–384.

    Article  PubMed  CAS  Google Scholar 

  8. Daeron M, Latour S, Malbec O et al. The same tyrosine-based inhibition motif, in the intracytoplasmic domain of Fc gamma RIIB, regulates negatively CR-, TCR-and FcR-dependent cell activation. Im-munity 1995; 3:635–646.

    CAS  Google Scholar 

  9. Van den Herik-Oudijk IE, TerBekke MW, Tempelman MJ et al. Functional differences between two Fc receptor ITAM signaling motifs. Blood 1995; 86:3302–3307.

    PubMed  Google Scholar 

  10. Metes D, Manciulea M, Pretrusca D et al. Ligand binding specificities and signal transduction pathways of Fc gamma receptor lie isoforms: the CD32 isoforms expressed by human NK cells. Eur J Immunol 1999; 29:2842–2852.

    Article  PubMed  CAS  Google Scholar 

  11. Lanier LL, Yu G, Phillips JH. Co-association of CD3 zeta with a receptor (CD 16) for IgG Fc on human natural killer cells. Nature 1989; 342:803–805.

    Article  PubMed  CAS  Google Scholar 

  12. Anderson P, Caligiuri M, O’Brien C et al. Fe gamma receptor type III (CD 16) is included in the zeta NK receptor complex expressed by human natural killer cells. Proc Natl Acad Sci USA 1990; 87:2274–2278.

    Article  PubMed  CAS  Google Scholar 

  13. Letourneur F, Klausner RD. T-cell and basophil activation through the cytoplasmic tail of T-cell-receptor zeta family proteins. Proc Natl Acad Sci USA 1991; 88:8905–8909.

    Article  PubMed  CAS  Google Scholar 

  14. Kurosaki T, Gander I, Wirthmueller U et al. The beta subunit of the Fc epsilon RI is associated with the Fc gamma RIII on mast cells. J Exp Med 1992; 175:447–451.

    Article  PubMed  CAS  Google Scholar 

  15. Isakov N. ITIMs and ITAMs. The Yin and Yang of antigen and Fc receptor-linked signaling machinery. Immunol Res 1997; 16:85–100.

    Article  PubMed  CAS  Google Scholar 

  16. Muta T, Kurosaki T, Misulovin Z et al. A 13-amino-acid motif in the cytoplasmic domain of Fc gamma RIIB modulates B-cell receptor signalling. Nature 1994; 369:340.

    PubMed  CAS  Google Scholar 

  17. Brooks DG, Qiu WQ, Luster AD et al. Structure and expression of human IgG FcRII(CD32). Func-tional heterogeneity is encoded by the alternatively spliced products of multiple genes. J Exp Med 1989; 170:1369–1385.

    Article  PubMed  CAS  Google Scholar 

  18. Van den Herik-Oudijk IE, Capel PJ, van der Bruggen T et al. Identification of signaling motifs within human Fc gamma Rlla and Fc gamma Rllb isoforms. Blood 1995; 85:2202–2211.

    PubMed  Google Scholar 

  19. Pan LY, Mendel DB, Zurlo J et al. Regulation of the steady state level of Fc gamma RI mRNA by IFN-gamma and dexamethasone in human monocytes, neutrophils and U-937 cells. J Immunol 1990; 145:267–275.

    PubMed  CAS  Google Scholar 

  20. te Velde AA, Huijbens RJ, de Vries JE et al. IL-4 decreases Fc gamma R membrane expression and Fc gamma R-mediated cytotoxic activity of human monocytes. J Immunol 1990; 144:3046–3051.

    Google Scholar 

  21. Welch GR, Wong HL, Wahl SM. Selective induction of Fc gamma RIII on human monocytes by transforming growth factor-beta. J Immunol 1990; 144:3444–3448.

    PubMed  CAS  Google Scholar 

  22. Pricop L, Redecha P, Teillaud JL et al. Differential modulation of stimulatory and inhibitory Fc gamma receptors on human monocytes by Thl and Th2 cytokines. J Immunol 2001; 166:531–537.

    PubMed  CAS  Google Scholar 

  23. Tridandapani S, Wardrop R, Baran CP et al. TGF-beta 1 suppresses [correction of supresses] myeloid Fc gamma receptor function by regulating the expression and function of the common gamma-subunit. J Immunol 2003; 170:4572–4577.

    PubMed  CAS  Google Scholar 

  24. Gomez G, Ramirez CD, Rivera J et al. TGF-beta 1 inhibits mast cell Fc epsilon RI expression. J Im-munol 2005; 174:5987–5993.

    CAS  Google Scholar 

  25. Salmon JE, Pricop L. Human receptors for Immunoglobulin G: Key elements in the pathogenesis of rheumatic disease. Arthritis Rheum 2001; 44:739–750.

    Article  PubMed  CAS  Google Scholar 

  26. Schmidt RE, Gessner JE. Fe receptors and their interaction with complement in autoimmunity. Immunol Lett 2005; 100:56–67.

    Article  PubMed  CAS  Google Scholar 

  27. Takai T. Roles of Fc receptors in autoimmunity. Nat Rev Immunol 2002; 2:580–592.

    PubMed  CAS  Google Scholar 

  28. Takai T. Fc receptors and their role in immune regulation and autoimmunity. J Clin Immunol 2005; 25:1–18.

    Article  PubMed  CAS  Google Scholar 

  29. McKenzie SE, Taylor SM, Malladi P et al. The role of the human Fc receptor Fc gamma RIIA in the immune clearance of platelets: A transgenic mouse model. J Immunol 1999; 162:4311–4318.

    PubMed  CAS  Google Scholar 

  30. Tan Sardjono C, Mottram PL, van de Velde NC et al. Development of spontaneous multisystem autoimmune disease and hypersensitivity to antibody-induced inflammation in Fcgamma receptor Ila-transgenic mice. Arthritis Rheum 2005; 52:3220–3229.

    Google Scholar 

  31. On M, Billingsley JM, Jouvin MH et al. Molecular dissection of the FcRbeta signaling amplifier. J Biol Chem 2004; 279:45782–45790.

    Article  PubMed  CAS  Google Scholar 

  32. Pfefferkorn LC, Yeaman GR. Association of IgA-Fc receptors (Fc alpha R) with Fc epsilon RI gamma 2 subunits in U937 cells. Aggregation induces the tyrosine phosphorylation of gamma 2. J Immunol 1994; 153:3228–3236.

    PubMed  CAS  Google Scholar 

  33. Morton HC, van den Herik-Oudijk IE, Vossebeld P et al. Functional association between the human myeloid Immunoglobulin A Fc receptor (CD89) and FcR gamma chain. Molecular basis for CD89/ FcR gamma chain association. J Biol Chem 1995; 270:29781–29787.

    Article  PubMed  CAS  Google Scholar 

  34. Wines BD, Trist HM, Ramsland PA et al. A common site of the Fc receptor gamma subunit interacts with the unrelated immunoreceptors FcalphaRI and FcepsilonRI. J Biol Chem 2006; 281:17108–17113.

    Article  PubMed  CAS  Google Scholar 

  35. Maruoka T, Nagata T, Kasahara M. Identification of the rat IgA Fc receptor encoded in the leukocyte receptor complex. Immunogenetics 2004; 55:712–716.

    Article  PubMed  CAS  Google Scholar 

  36. Reljic R. In search of the elusive mouse macrophage Fc-alpha receptor. Immunol Lett 2006; 107: 80–81.

    Article  PubMed  Google Scholar 

  37. Wines BD, Hulett MD, Jamieson GP et al. Identification of residues in the first domain of human Fc alpha receptor essential for interaction with IgA. J Immunol 1999; 162:2146–2153.

    PubMed  CAS  Google Scholar 

  38. Wines BD, Sardjono CT, Trist HH et al. The interaction of Fc alpha RI with IgA and its implica-tions for ligand binding by immunoreceptors of the leukocyte receptor cluster. J Immunol 2001; 166:1781–1789.

    PubMed  CAS  Google Scholar 

  39. Herr AB, Ballister ER, Bjorkman PJ. Insights into IgA-mediated immune responses from the crystal structures of human FcalphaRI and its complex with IgAl-Fc. Nature 2003; 423:614–620.

    Article  PubMed  CAS  Google Scholar 

  40. Pasquier B, Launay P, Kanamaru Y et al. Identification of FcalphaRI as an inhibitory receptor that controls inflammation: Dual role of FcRgamma ITAM. Immunity 2005; 22:31–42.

    PubMed  CAS  Google Scholar 

  41. Hamerman JA, Lanier LL. Inhibition of immune responses by ITAM-bearing receptors. Sci STKE 2006; 2006:rel.

    Google Scholar 

  42. Maxwell KF, Powell MS, Hulett MD et al. Crystal structure of the human leukocyte Fc receptor, Fc gammaRIIa. Nat Struct Biol 1999; 6:437–442.

    Article  PubMed  CAS  Google Scholar 

  43. Radaev S, Motyka S, Fridman WH et al. The structure of a human type III Fcgamma receptor in complex with Fe. J Biol Chem 2001; 276:16469–16477.

    Article  PubMed  CAS  Google Scholar 

  44. Sondermann P, Huber R, Oosthuizen V et al. The 3.2-A crystal structure of the human IgGl Fc fragment-Fc gammaRIII complex. Nature 2000; 406:267–273.

    Article  PubMed  CAS  Google Scholar 

  45. Woof JM, Burton DR. Human antibody-Fc receptor interactions illuminated by crystal structures. Nat Rev Immunol 2004; 4:89–99.

    Article  PubMed  CAS  Google Scholar 

  46. Garman SC, Wurzburg BA, Tarchevskaya SS et al. Structure of the Fc fragment of human IgE bound to its high-affinity receptor Fc epsilonRI alpha. Nature 2000; 406:259–266.

    Article  PubMed  CAS  Google Scholar 

  47. Hulett MD, Hogarth PM. The second and third extracellular domains of FcgammaRI (CD64) confer the unique high affinity binding of IgG2a. Mol Immunol 1998; 35:989–996.

    Article  PubMed  CAS  Google Scholar 

  48. Hulett MD, McKenzie IF, Hogarth PM. Chimeric Fe receptors identify immunoglobulin-binding regions in human Fc gamma RII and Fc epsilon RI. Eur J Immunol 1993; 23:640–645.

    Article  PubMed  CAS  Google Scholar 

  49. Hulett MD, Witort E, Brinkworth RI et al. Identification of the IgG binding site of the human low affinity receptor for IgG Fc gamma RII. Enhancement and ablation of binding by site-directed muta-genesis. J Biol Chem 1994; 269:15287–15293.

    PubMed  CAS  Google Scholar 

  50. Hulett MD, Witort E, Brinkworth RI et al. Multiple regions of human Fc gamma RII (CD32) contribute to the binding of IgG. J Biol Chem 1995; 270:21188–21194.

    Article  PubMed  CAS  Google Scholar 

  51. Kato K, Sautes-Fridman C, Yamada W et al. Structural basis of the interaction between IgG and Fcgamma receptors. J Mol Biol 2000; 295:213–224.

    Article  PubMed  CAS  Google Scholar 

  52. Duncan AR, Woof JM, Partridge LJ et al. Localization of the binding site for the human high-affinity Fc receptor on IgG. Nature 1988; 332:563–564.

    Article  PubMed  CAS  Google Scholar 

  53. Lund J, Winter G, Jones PT et al. Human Fc gamma RI and Fc gamma RII interact with distinct but overlapping sites on human IgG. J Immunol 1991; 147:2657–2662.

    PubMed  CAS  Google Scholar 

  54. Chappel MS, Isenman DE, Everett M et al. Identification of the Fc gamma receptor class I binding site in human IgG through the use of recombinant IgGl/IgG2 hybrid and point-mutated antibodies. Proc Nad Acad Sci USA 1991; 88:9036–9040.

    Article  CAS  Google Scholar 

  55. Ghirlando R, Keown MB, Mackay GA et al. Stoichiometry and thermodynamics of the interaction between the Fc fragment of human IgGl and its low-affinity receptor Fc gamma RIII. Biochemistry 1995; 34:13320–13327.

    Article  PubMed  CAS  Google Scholar 

  56. Keown MB, Ghirlando R, Mackay GA et al. Basis of the 1:1 stoichiometry of the high affinity receptor Fc epsilon RI-IgE complex. Eur Biophys J 1997; 25:471–476.

    Article  PubMed  CAS  Google Scholar 

  57. Powell MS, Barnes NC, Bradford TM et al. Alteration of the Fc gamma Rlla dimer interface affects receptor signaling but not ligand binding. J Immunol 2006; 176:7489–7494.

    PubMed  CAS  Google Scholar 

  58. Pribluda VS, Pribluda C, Metzger H. Transphosphorylation as the mechanism by which the high-affinity receptor for IgE is phosphorylated upon aggregation. Proc Natl Acad Sci USA 1994; 91:11246–11250.

    Article  PubMed  CAS  Google Scholar 

  59. Barnes NC, Powell MS, Trist HM et al. Raft localisation of FcgammaRIIa and efficient signaling are dependent on palmitoylation of cysteine 208. Immunol Lett 2006; 104:118–123.

    Article  PubMed  CAS  Google Scholar 

  60. Katsumata O, Hara-Yokoyama M, Sautes-Fridman C et al. Association of FcgammaRII with low-density detergent-resistant membranes is important for cross-linking-dependent initiation of the tyrosine phos-phorylation pathway and Superoxide generation. J Immunol 2001; 167:5814–5823.

    PubMed  CAS  Google Scholar 

  61. Kwiatkowska K, Frey J, Sobota A. Phosphorylation of FcgammaRIIA is required for the receptor-induced actin rearrangement and capping: the role of membrane rafts. J Cell Sci 2003; 116:537–550.

    Article  PubMed  CAS  Google Scholar 

  62. Wines BD, Trist HM, Monteiro RC et al. Fc receptor gamma chain residues at the interface of the cytoplasmic and transmembrane domains affect association with FcalphaRI, surface expression and function. J Biol Chem 2004; 279:26339–26345.

    Article  PubMed  CAS  Google Scholar 

  63. Floto RA, Clatworthy MR, Heilbronn KR et al. Loss of function of a lupus-associated FcgammaRIIb polymorphism through exclusion from lipid rafts. Nat Med 2005; 11:1056–1058.

    Article  PubMed  CAS  Google Scholar 

  64. Kono H, Kyogoku C, Suzuki T et al. FcgammaRIIB Ile232Thr transmembrane polymorphism associ-ated with human systemic lupus erythematosus decreases affinity to lipid rafts and attenuates inhibitory effects on B-cell receptor signaling. Hum Mol Genet 2005; 14:2881–2892.

    Article  PubMed  CAS  Google Scholar 

  65. Li X, Wu J, Carter RH et al. A novel polymorphism in the Fcgamma receptor IIB (CD32B) transmem-brane region alters receptor signaling. Arthritis Rheum 2003; 48:3242–3252.

    Article  PubMed  CAS  Google Scholar 

  66. Holowka D, Gosse JA, Hammond AT et al. Lipid segregation and IgE receptor signaling: A decade of progress. Biochim Biophys Acta 2005; 1746:252–259.

    Article  PubMed  CAS  Google Scholar 

  67. Kim MK, Huang ZY, Hwang PH et al. Fcgamma receptor transmembrane domains: role in cell surface expression, gamma chain interaction and phagocytosis. Blood 2003; 101:4479–4484.

    Article  PubMed  CAS  Google Scholar 

  68. Lanier LL, Yu G, Phillips JH. Analysis of Fc gamma RIII (CD 16) membrane expression and as-sociation with CD3 zeta and Fc epsilon Ri-gamma by site-directed mutation. J Immunol 1991; 146:1571–1576.

    PubMed  CAS  Google Scholar 

  69. Miller L, Alber G, Varin-Blank N et al. Transmembrane signaling in P815 mastocytoma cells by trans-fected IgE receptors. J Biol Chem 1990; 265:12444–12453.

    PubMed  CAS  Google Scholar 

  70. Dombrowicz D, Flamand V, Miyajima I et al. Absence of Fc epsilonRI alpha chain results in upregula-tion of Fc gammaRIII-dependent mast cell degranulation and anaphylaxis. Evidence of competition between Fc epsilonRI and Fc gammaRIII for limiting amounts of FcR beta and gamma chains. J Clin Invest 1997; 99:915–925.

    Article  PubMed  CAS  Google Scholar 

  71. Dombrowicz D, Lin S, Flamand V et al. Allergy-associated FcRbeta is a molecular amplifier of IgE-and IgG-mediated in vivo responses. Immunity 1998; 8:517–529.

    Article  PubMed  CAS  Google Scholar 

  72. Cosson P, Lankford SP, Bonifacino JS et al. Membrane protein association by potential intramembrane charge pairs. Nature 1991; 351:414–416.

    Article  PubMed  CAS  Google Scholar 

  73. Varin-Blank N, Metzger H. Surface expression of mutated subunits of the high affinity mast cell receptor for IgE. J Biol Chem 1990; 265:15685–15694.

    PubMed  CAS  Google Scholar 

  74. Masuda M, Roos D. Association of all three types of Fc gamma R (CD64, CD32 and CD 16) with a gamma-chain homodimer in cultured human monocytes. J Immunol 1993; 151:7188–7195.

    PubMed  CAS  Google Scholar 

  75. Remy I, Michnick SW. Clonal selection and in vivo quantitation of protein interactions with pro-tein-fragment complementation assays. Proc Natl Acad Sci USA 1999; 96:5394–5399.

    Article  PubMed  CAS  Google Scholar 

  76. Zhang F, Yang B, Odin JA et al. Lateral mobility of Fc gamma Rlla is reduced by protein kinase activation. FEBS Lett 1995; 376:77–80.

    Article  PubMed  CAS  Google Scholar 

  77. Larson DR, Gosse JA, Holowka DA et al. Temporally resolved interactions between antigen-stimulated IgE receptors and Lyn kinase on living cells. J Cell Biol 2005; 171:527–536.

    Article  PubMed  CAS  Google Scholar 

  78. Garrity D, Call ME, Feng J et al. The activating NKG2D receptor assembles in the membrane with two signaling dimers into a hexameric structure. Proc Natl Acad Sci USA 2005; 102:7641–7646.

    Article  PubMed  CAS  Google Scholar 

  79. Schamel W, Reth M. Monomeric and oligomeric complexes of the-cell antigen receptor. Immunity 2000; 13:5–14.

    Article  PubMed  CAS  Google Scholar 

  80. Call ME, Pyrdol J, Wiedmann M et al. The organizing principle in the formation of the T-cell recep-tor-CD3 complex. Cell 2002; 111:967–979.

    Article  PubMed  CAS  Google Scholar 

  81. Odin JA, Edberg JC, Painter CJ et al. Regulation of phagocytosis and [Ca2+]i flux by distinct regions of an Fc receptor. Science 1991; 254:1785–1788.

    Article  PubMed  CAS  Google Scholar 

  82. Indik Z, Kelly C, Chien P et al. Human Fc gamma RII, in the absence of other Fc gamma receptors, mediates a phagocytic signal. J Clin Invest 1991; 88:1766–1771.

    Article  PubMed  CAS  Google Scholar 

  83. Booth JW, Kim MK, Jankowski A et al. Contrasting requirements for ubiquitylation during Fc receptor-mediated endocytosis and phagocytosis. EMBO J 2002; 21:251–258.

    Article  PubMed  CAS  Google Scholar 

  84. Anderson CL, Shen L, Eicher DM et al. Phagocytosis mediated by three distinct Fc gamma receptor classes on human leukocytes. J Exp Med 1990; 171:1333–1345.

    Article  PubMed  CAS  Google Scholar 

  85. Bredius RG, Fijen CA, De Haas M et al. Role of neutrophil Fc gamma Rlla (CD32) and Fc gamma RlIIb (CD 16) polymorphic forms in phagocytosis of human IgGl-and IgG3-opsonized bacteria and erythrocytes. Immunology 1994; 83:624–630.

    PubMed  CAS  Google Scholar 

  86. Cox D, Greenberg S. Phagocytic signaling strategies: Fc(gamma)receptor-mediated phagocytosis as a model system. Semin Immunol 2001; 13:339–345.

    Article  PubMed  CAS  Google Scholar 

  87. Kim MK, Pan XQ, Huang ZY et al. Fc gamma receptors differ in their structural requirements for interaction with the tyrosine kinase Syk in the initial steps of signaling for phagocytosis. Clin Immunol 2001; 98:125–132.

    Article  PubMed  CAS  Google Scholar 

  88. Indik ZK, Park JG, Hunter S et al. The molecular dissection of Fc gamma receptor mediated phagocytosis. Blood 1995; 86:4389–4399.

    PubMed  CAS  Google Scholar 

  89. Edberg JC, Yee AM, Rakshit DS et al. The cytoplasmic domain of human FcgammaRIa alters the functional properties of the FcgammaRI.gamma-chain receptor complex. J Biol Chem 1999; 274:30328–30333.

    Article  PubMed  CAS  Google Scholar 

  90. Beekman JM, Bakema JE, van de Winkel JG et al. Direct interaction between FcgammaRI (CD64) and periplakin controls receptor endocytosis and ligand binding capacity. Proc Natl Acad Sci USA 2004; 101:10392–10397.

    Article  PubMed  CAS  Google Scholar 

  91. Remvig L, Thomsen BS, Baek L et al. Interleukin l, but not interleukin l inhibitor, is released from human monocytes by immune complexes. Scand J Immunol 1990; 32:255–261.

    Article  PubMed  CAS  Google Scholar 

  92. Debets JM, Van de Winkel JG, Ceuppens JL et al. Cross-linking of both Fc gamma RI and Fc gamma RII induces secretion of tumor necrosis factor by human monocytes, requiring high affinity Fc-Fc gamma R interactions. Functional activation of Fc gamma RII by treatment with proteases or neuraminidase. J Immunol 1990; 144:1304–1310.

    PubMed  CAS  Google Scholar 

  93. Feldmann M, Steinman L. Design of effective immunotherapy for human autoimmunity. Nature 2005; 435:612–619.

    Article  PubMed  CAS  Google Scholar 

  94. Feldmann M, Brennan FM, Foxwell BM et al. Anti-TNF therapy: Where have we got to in 2005? J Autoimmun 2005; 25 Suppl:26–28.

    Google Scholar 

  95. Ierino FL, Powell MS, McKenzie IF et al. Recombinant soluble human Fc gamma RII: Production, characterization and inhibition of the Arthus reaction. J Exp Med 1993; 178:1617–1628.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Powell, M.S., Hogarth, P.M. (2008). Fc Receptors. In: Sigalov, A.B. (eds) Multichain Immune Recognition Receptor Signaling. Advances in Experimental Medicine and Biology, vol 640. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09789-3_3

Download citation

Publish with us

Policies and ethics