Skip to main content

Therapeutic Blockade of T- Cell Antigen Receptor Signal Transduction and Costimulation in Autoimmune Disease

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 640))

Abstract

CD4+ T-cell-mediated autoimmune diseases are initiated and maintained by the presentation of self-antigen by antigen-presenting cells (APCs) to self-reactive CD4+ T-cells. According to the two-signal hypothesis, activation of a naïve antigen-specific CD4+ T-cell requires stimulation of both the T-cell antigen receptor (signal 1) and costimulatory molecules such as CD28 (signal 2). To date, the majority of therapies for autoimmune diseases approved by the Food and Drug Administration primarily focus on the global inhibition of immune inflammatory activity. The goal of ongoing research in this field is to develop antigen-specific treatments which block the deleterious effects of self-reactive immune cell function while maintaining the ability of the immune system to clear nonself antigens. To this end, the signaling pathways involved in the induction of CD4+ T-cell anergy, as apposed to activation, are a topic of intense interest. This chapter discusses components of the CD4+ T-cell activation pathway that may serve as therapeutic targets for the treatment of autoimmune disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steinman L, Martin R, Bernard C et al. Multiple sclerosis: Deeper understanding of its pathogenesis reveals new targets for therapy. Annu Rev Neurosci 2002; 25:491–505.

    Article  PubMed  CAS  Google Scholar 

  2. Zinkernagel RM. H-2 restriction of virus-specific T-cell-mediated effector functions in vivo. II. Adoptive transfer of delaycd-type hypersensitivity to murine lymphocytic choriomeningitis virus is restricted by the K and D region of H-2. J Exp Med 1976; 144:776–87.

    Article  PubMed  CAS  Google Scholar 

  3. Von Boehmer H. T-cell development and selection in the thymus. Bone Marrow Transplant 1992; 9Suppl 1:46–48.

    Google Scholar 

  4. Rocha B, Vassalli P, Guy-Grand D. The cxtrathymic T-cell development pathway. Immunol Today 1992; 13:449–54.

    Article  PubMed  CAS  Google Scholar 

  5. Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol 2005; 23:683–747.

    Article  PubMed  CAS  Google Scholar 

  6. Paterson PY, Swanborg RH. Demyelinating diseases of the central and peripheral nervous systems. Immunological Diseases, Vol. 4. In: Sampter M, Talmage DW, Frank MM et al, eds. Boston: Little, Brown and Co, 1988:1877–916.

    Google Scholar 

  7. Lafferty KJ, Cunningham AJ. A new analysis of allogeneic interactions. Aust J Exp Biol Med Sci 1975; 53:27–42.

    Article  PubMed  CAS  Google Scholar 

  8. Damle NK, Klussman K, Linsley PS et al. Differential costimulatory effects of adhesion molecules B7, ICAM-1, LFA-3 and VCAM-1 on resting and antigen-primed CD4 + T-lymphocytes. J Immunol 1992; 148:1985–92.

    PubMed  CAS  Google Scholar 

  9. Gross JA, Callas E, Allison JP. Identification and distribution of the costimulatory receptor CD28 in the mouse. J Immunol 1992; 149:380–88.

    PubMed  CAS  Google Scholar 

  10. Harding FA, McArthur J, Gross JA et al. CD28 mediated signalling costimulates murine T-cells and prevents induction of anergy in T-cell clones. Nature 1992; 356:607–09.

    Article  PubMed  CAS  Google Scholar 

  11. Norton SD, Zuckerman L, Urdahl KB et al. The CD28 ligand, B7, enhances IL-2 production by providing a costimulatory signal to T-cells. J Immunol 1992; 149:1556–61.

    PubMed  CAS  Google Scholar 

  12. Seder RA, Germain RN, Linsley PS et al. CD28-mediated costimulation of interleukin 2 (IL-2) production plays a critical role in T-cell priming for IL-4 and interferon gamma production. J Exp Med 1994; 179:299–304.

    Article  PubMed  CAS  Google Scholar 

  13. Mangan PR, Harrington LE, O’Quinn DB et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006; 441:231–34.

    Article  PubMed  CAS  Google Scholar 

  14. Veldhoen M, Hocking RJ, Atkins CJ et al. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T-cells. Immunity 2006; 24:179–89.

    Article  PubMed  CAS  Google Scholar 

  15. Chen Y, Langrish CL, McKenzie B et al. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest 2006; 116:1317–26.

    Article  PubMed  CAS  Google Scholar 

  16. Langrish CL, Chen Y, Blimienschein WM et al. IL-23 drives a pathogenic T-cell population that induces autoimmune inflammation. J Exp Med 2005; 201:233–40.

    Article  PubMed  CAS  Google Scholar 

  17. Herold KC, Burton JB, Francois F et al. Activation of human T-cells by FcR nonbinding anti-CD3 mAb, hOKT3gammal(Ala-Ala). J Clin Invest 2003; 111:409–18.

    PubMed  CAS  Google Scholar 

  18. Chatenoud L. CD3-specific antibody-induced active tolerance: From bench to bedside. Nat Rev Immunol 2003; 3:123–32.

    Article  PubMed  CAS  Google Scholar 

  19. Plain KM, Chen J, Merten S et al. Induction of specific tolerance to allografts in rats by therapy with nonmitogenic, nondepleting anti-CD3 monoclonal antibody: Association with TH2 cytokines not anergy. Transplantation 1999; 67:605–13.

    Article  PubMed  CAS  Google Scholar 

  20. Tran GT, Carter N, He XY et al. Reversal of experimental allergic encephalomyelitis with nonmitogenic, nondepleting anti-CD3 mAb therapy with a preferential effect on T(h)l cells that is augmented by IL-4. Int Immunol 2001; 13:1109–20.

    Article  PubMed  CAS  Google Scholar 

  21. Smith JA, Tso JY, Clark MR et al. Nonmitogenic anti-CD3 monoclonal antibodies deliver a partial T-cell receptor signal and induce clonal anergy. J Exp Med 1997; 185:1413–22.

    Article  PubMed  CAS  Google Scholar 

  22. Smith JA, Tang Q, Bluestone JA. Partial TCR signals delivered by FcR-nonbinding anti-CD3 monoclonal antibodies differentially regulate individual Th subsets. J Immunol 1998; 160:4841–49.

    PubMed  CAS  Google Scholar 

  23. Peng J, Liu C, Liu D et al. Effects of B7-blocking agent and/or CsA on induction of platelet-specific T-cell anergy in chronic autoimmune thrombocytopenic purpura. Blood 2003; 101:2721–6.

    Article  PubMed  CAS  Google Scholar 

  24. Schweitzer AN, Sharpe AH. Studies using antigen-presenting cells lacking expression of both B7-1 (CD80) and B7-2 (CD86) show distinct requirements for B7 molecules during priming versus restimulation of Th2 but not Thl cytokine production. J Immunol 1998; 161:2762–71.

    PubMed  CAS  Google Scholar 

  25. Kuchroo VK, Das MP, Brown JA et al. B7-1 and B7-2 costimulatory molecules differentially activate the Thl/Th2 developmental pathways: Application to autoimmune disease therapy. Cell 1995; 80:707–18.

    Article  PubMed  CAS  Google Scholar 

  26. Perrin PJ, Scott D, Davis TA et al. Opposing effects of CTLA4-Ig and anti-CD80 (B7-1) plus anti-CD86 (B7-2) on experimental allergic encephalomyelitis. J Neuroimmunol 1996; 65:31–39.

    Article  PubMed  CAS  Google Scholar 

  27. Miller SD, Vanderlugt CL, Lenschow DJ et al. Blockade of CD28/B7-1 interaction prevents epitope spreading and clinical relapses of murine EAE. Immunity 1995; 3:739–45.

    Article  PubMed  CAS  Google Scholar 

  28. Vanderlugt CL, Karandikar NJ, Lenschow DJ et al. Treatment with intact anti-B7-l mAb during disease remission enhances epitope spreading and exacerbates relapses in R-EAE. J Neuroimmunol 1997; 79:113–18.

    Article  PubMed  CAS  Google Scholar 

  29. Srinivasan M, Gienapp IE, Stuckman SS et al. Suppression of experimental autoimmune encephalomyelitis using peptide mimics of CD28. J Immunol 2002; 169:2180–8.

    PubMed  CAS  Google Scholar 

  30. Wetzig R, Hanson DG, Miller SD et al. Binding of Ovalbumin to mouse spleen cells with and without carbodiimide. J Immunol Methods 1979; 28:361–68.

    Article  CAS  Google Scholar 

  31. Miller SD, Wetzig RP, Claman HN. The induction of cell-mediated immunity and tolerance with protein antigens coupled to syngeneic lymphoid cells. J Exp Med 1979; 149:758–73.

    Article  PubMed  CAS  Google Scholar 

  32. Jenkins MK, Schwartz RH. Antigen presentation by chemically modified splenocytes induces antigen-specific T-cell unresponsiveness in vitro and in vivo J Exp Med 1987; 165:302–19.

    Article  PubMed  CAS  Google Scholar 

  33. Miller SD, Tan LJ, Pope L et al. Antigen-specific tolerance as a therapy for experimental autoimmune encephalomyelitis. Int Rev Immunol 1992; 9:203–22.

    Article  PubMed  CAS  Google Scholar 

  34. Braley-Mullen H, Tompson JG, Sharp GC et al. Suppression of experimental autoimmime thyroiditis in guinea pigs by pretreatment with thyroglobulin-coupled spleen cells. Cell Immunol 1980; 51:408–13.

    Article  PubMed  CAS  Google Scholar 

  35. Dua HS, Gregerson DS, Donoso LA. Inhibition of experimental autoimmune uveitis by retinal photoreceptor antigens coupled to spleen cells. Cell Immunol 1992; 139:292–305.

    Article  PubMed  CAS  Google Scholar 

  36. Gregorian SK, Clark L, Heber-Katz E et al. Induction of peripheral tolerance with peptide-specific anergy in experimental autoimmune neuritis. Cell Immunol 1993; 150:298–310.

    Article  PubMed  CAS  Google Scholar 

  37. Elliott C, Wang K, Miller SD et al. Ethylcarbodiimide as an agent for induction of specific transplant tolerance. Transplantation 1994; 58:966–68.

    Article  PubMed  CAS  Google Scholar 

  38. Kennedy MK, Tan LJ, Dal Canto MC et al. Regulation of the effector stages of experimental autoimmune encephalomyelitis via neuroantigen-specific tolerance induction. J Immunol 1990; 145:117–26.

    PubMed  CAS  Google Scholar 

  39. Kennedy KJ, Smith WS, Miller SD et al. Induction of antigen-specific tolerance for the treatment of ongoing, relapsing autoimmune encephalomyelitis—A comparison between oral and peripheral tolerance. J Immunol 1997; 159:1036–44.

    PubMed  CAS  Google Scholar 

  40. Vandenbark AA, Vainiene M, Ariail K et al. Prevention and treatment of relapsing autoimmune encephalomyelitis with myelin peptide-coupled splenocytes. J Neurosci Res 1996; 45:430–38.

    Article  PubMed  CAS  Google Scholar 

  41. Smith CE, Eagar TN, Strominger JL et al. Differential induction of IgE-mediated anaphylaxis after soluble vs cell-bound tolerogenic peptide therapy of autoimmune encephalomyelitis. Proc Natl Acad Sci USA 2005; 102:9595–600.

    Article  PubMed  CAS  Google Scholar 

  42. Pedotti R, Mitchell D, Wedemeyer J et al. An unexpected version of horror autotoxicus: anaphylactic shock to a self-peptide. Nat Immunol 2001; 2:216–22.

    Article  PubMed  CAS  Google Scholar 

  43. Eagar TN, Karandikar NJ, Bluestone J et al. The role of CTLA-4 in induction and maintenance of peripheral T-cell tolerance. Eur J Immunol 2002; 32:972–81.

    Article  PubMed  CAS  Google Scholar 

  44. Eagar TN, Turley DM, Padilla J et al. CTLA-4 regulates expansion and differentiation of Th1 cells following induction of peripheral T-cell tolerance. J Immunol 2004; 172:7442–50.

    PubMed  CAS  Google Scholar 

  45. Kennedy MK, Dal Canto MC, Trotter JL et al. Specific immune regulation of chronic-relapsing experimental allergic encephalomyelitis in mice. J Immunol 1988; 141:2986–93.

    PubMed  CAS  Google Scholar 

  46. Kennedy MK, Tan LJ, Dal Canto MC et al. Inhibition of murine relapsing experimental autoimmune encephalomyelitis by immune tolerance to proteolipid protein and its encephalitogenic peptides. J Immunol 1990; 144:909–15.

    PubMed  CAS  Google Scholar 

  47. Tan LJ, Kennedy MK, Miller SD. Regulation of the effector stages of experimental autoimmune encephalomyelitis via neuroantigen-specific tolerance induction. II. Fine specificity of effector T-cell inhibition. J Immunol 1992; 148:2748–55.

    PubMed  CAS  Google Scholar 

  48. Smith CE, Miller SD. Multi-peptide coupled-cell tolerance ameliorates ongoing relapsing EAE associated with multiple pathogenic autoreactivities. J Autoimmunity 2006; 27:218–31.

    Article  CAS  Google Scholar 

  49. Pope L, Paterson PY, Miller SD. Antigen-specific inhibition of the adoptive transfer of experimental autoimmune encephalomyelitis in Lewis rats. J Neuroimmunol 1992; 37:177–90.

    Article  PubMed  CAS  Google Scholar 

  50. Turley DM, Miller SD. Peripheral tolerance Induction using ethylenecarbodiimide-fixed APCs uses both direct and indirect mechanisms of antigen presentation for prevention of experimental autoimmune encephalomyelitis. J Immunol 2007; 178:2212–20.

    PubMed  CAS  Google Scholar 

  51. Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 387:569–72.

    Article  PubMed  CAS  Google Scholar 

  52. Langlet C, Bernard AM, Drevot P et al. Membrane rafts and signaling by the multichain immune recognition receptors. Curr Opin Immunol 2000; 12:250–5.

    Article  PubMed  CAS  Google Scholar 

  53. Vidalain PO, Azocar O, Servet-Delprat C et al. CD40 signaling in human dendritic cells is initiated within membrane rafts. EMBO J 2000; 19:3304–13.

    Article  PubMed  CAS  Google Scholar 

  54. Shenoy-Scaria AM, Gauen LK, Kwong J et al. Palmitylation of an amino-terminal cysteine motif of protein tyrosine kinases p56lck and p59fyn mediates interaction with glycosyl-phosphatidylinositol-anchored proteins. Mol Cell Biol 1993; 13:6385–92.

    PubMed  CAS  Google Scholar 

  55. Zhang W, Trible RP, Samelson LE. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T-cell activation. Immunity 1998; 9:239–46.

    Article  PubMed  CAS  Google Scholar 

  56. Bromley SK, Burack WR, Johnson KG et al. The immunological synapse. Annu Rev Immunol 2001; 19:375–96.

    Article  PubMed  CAS  Google Scholar 

  57. Grakoui A, Bromley SK, Sumen C et al. The immunological synapse: A molecular machine controlling T-cell activation. Science 1999; 285:221–7.

    Article  PubMed  CAS  Google Scholar 

  58. Monks CR, Freiberg BA, Kupfer H et al. Three-dimensional segregation of supramolecular activation clusters in T-cells. Nature 1998; 395:82–6.

    Article  PubMed  CAS  Google Scholar 

  59. Viola A, Schroeder S, Sakakibara Y et al. T-lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 1999; 283:680–2.

    Article  PubMed  CAS  Google Scholar 

  60. Schwartz RH. T-cell anergy. Annu Rev Immunol 2003; 21:305–34.

    Article  PubMed  CAS  Google Scholar 

  61. Jenkins MK, Mueller D, Schwartz RH et al. Induction and maintenance of anergy in mature T-cells. Adv Exp Med Biol 1991; 292:167–76.

    PubMed  CAS  Google Scholar 

  62. Schwartz RH. A cell culture model for T-lymphocyte clonal anergy. Science 1990; 248:1349–56.

    Article  PubMed  CAS  Google Scholar 

  63. Schwartz RH, Mueller DL, Jenkins MK et al. T-cell clonal anergy. Cold Spring Harb Symp Quant Biol 1989; 54:605–10.

    PubMed  CAS  Google Scholar 

  64. Borde M, Barrington RA, Heissmeyer V et al. Transcriptional basis of lymphocyte tolerance. Immunol Rev 2006; 210:105–19.

    Article  PubMed  CAS  Google Scholar 

  65. Heissmeyer V, Rao A. E3 ligases in T-cell anergy—Turning immune responses into tolerance. Sci STKE 2004; 2004:pe29.

    Article  PubMed  Google Scholar 

  66. Fang D, Liu YC. Proteolysis-independent regulation of PI3K by Cbl-b-mediated ubiquitination in T-cells. Nat Immunol 2001; 2:870–5.

    Article  PubMed  CAS  Google Scholar 

  67. Ward SG, Cantrell DA. Phosphoinositide 3-kinases in T-lymphocyte activation. Curr Opin Immunol 2001; 13:332–8.

    Article  PubMed  CAS  Google Scholar 

  68. Parry RV, Whittaker GC, Sims M et al. Ligation of CD28 stimulates the formation of a multimeric signaling complex involving grb-2-associated binder 2 (gab2), SRC homology phosphatase-2 and phosphatidylinositol 3-kinase: evidence that negative regulation of CD28 signaling requires the gab2 pleckstrin homology domain. J Immunol 2006; 176:594–602.

    PubMed  CAS  Google Scholar 

  69. Diehn M, Alizadeh AA, Rando OJ et al. Genomic expression programs and the integration of the CD28 costimulatory signal in T-cell activation. Proc Natl Acad Sci USA 2002; 99:11796–801.

    Article  PubMed  CAS  Google Scholar 

  70. Goodnow CC. Pathways for self-tolerance and the treatment of autoimmune diseases. Lancet 2001; 357:2115–21.

    Article  PubMed  CAS  Google Scholar 

  71. Macian F, Lopez-Rodriguez C, Rao A. Partners in transcription: NFAT and AP-1. Oncogene 2001; 20:2476–89.

    Article  PubMed  CAS  Google Scholar 

  72. Crabtrec GR, Olson EN. NFAT signaling: Choreographing the social lives of cells. Cell 2002; 109Suppl:S67–79.

    Article  Google Scholar 

  73. Jeon MS, Atfield A, Venuprasad K et al. Essential role of the E3 ubiquitin ligase Cbl-b in T-cell anergy induction. Immunity 2004; 21:167–77.

    Article  PubMed  CAS  Google Scholar 

  74. Seroogy CM, Soares L, Ranheim EA et al. The gene related to anergy in lymphocytes, an E3 ubiquitin ligase, is necessary for anergy induction in CD4 T-cells. J Immunol 2004; 173:79–85.

    PubMed  CAS  Google Scholar 

  75. Anandasabapathy N, Ford GS, Bloom D et al. GRAIL: An E3 ubiquitin ligase that inhibits cytokine gene transcription is expressed in anergic CD4+ T-cells. Immunity 2003; 18:535–47.

    Article  PubMed  CAS  Google Scholar 

  76. Naramura M, Kole HK, Hu RJ et al. Altered thymic positive selection and intracellular signals in Cbl-deficient mice. Proc Natl Acad Sci USA 1998; 95:15547–52.

    Article  PubMed  CAS  Google Scholar 

  77. Bachmaier K, Krawczyk C, Kozieradzki I et al. Negative regulation of lymphocyte activation and auto-immunity by the molecular adaptor Cbl-b. Nature 2000; 403:211–6.

    Article  PubMed  CAS  Google Scholar 

  78. Gremese E, Ferraccioli GF. Benefit/risk of cyclosporine in rheumatoid arthritis. Clin Exp Rheumatol 2004; 22:S101–7.

    Google Scholar 

  79. Kiani A, Rao A, Aramburu J. Manipulating immune responses with immunosuppressive agents that target NFAT. Immunity 2000; 12:359–72.

    Article  PubMed  CAS  Google Scholar 

  80. Aramburu J, Garcia-Cozar F, Raghavan A et al. Selective inhibition of NFAT activation by a peptide spanning the calcineurin targeting site of NFAT. Mol Cell 1998; 1:627–37.

    Article  PubMed  CAS  Google Scholar 

  81. Aramburu J, Yaffe MB, Lope-Rodriguez C et al. Affinity-driven peptide selection of an NFAT inhibitor more selective than cyclosporin A. Science 1999; 285:2129–33.

    Article  PubMed  CAS  Google Scholar 

  82. Noguchi H, Matsushita M, Okitsu T et al. A new cell-permeable peptide allows successful allogeneic islet transplantation in mice. Nat Med 2004; 10:305–9.

    Article  PubMed  CAS  Google Scholar 

  83. Li H Rao A, Hogan PG. Structural delineation of the calcineurin-NFAT interaction and its parallels to PPl targeting interactions. J Mol Biol 2004; 342:1659–74.

    Google Scholar 

  84. Rodriguez A, Martinez-Martinez S, Lopez-Maderuelo MD et al. The linker region joining the catalytic and the regulatory domains of CnA is essential for binding to NFAT. J Biol Chem 2005; 280:9980–4.

    Article  PubMed  CAS  Google Scholar 

  85. Roehrl MH, Kang S, Aramburu J et al. Selective inhibition of calcineurin-NFAT signaling by blocking protein-protein interaction with small organic molecules. Proc Natl Acad Sci USA 2004; 101:7554–9.

    Article  PubMed  CAS  Google Scholar 

  86. Venkatesh N, Feng Y, DeDecker B et al. Chemical genetics to identify NFAT inhibitors: Potential of targeting calcium mobilization in immunosuppression. Proc Natl Acad Sci USA 2004; 101:8969–74.

    Article  PubMed  CAS  Google Scholar 

  87. Houtman JC, Houghtling RA, Barda-Saad M et al. Early phosphorylation kinetics of proteins involved in proximal TCR-mediated signaling pathways. J Immunol 2005; 175:2449–58.

    PubMed  CAS  Google Scholar 

  88. Hundt M, Tabata H, Jeon MS et al. Impaired activation and localization of LAT in anergic T-cells as a consequence of a selective palmitoylation defect. Immunity 2006; 24:513–22.

    Article  PubMed  CAS  Google Scholar 

  89. Friedl P, den Boer AT, Gunzer M. Tuning immune responses: diversity and adaptation of the immuno-logical synapse. Nat Rev Immunol 2005; 5:532–45.

    Article  PubMed  CAS  Google Scholar 

  90. Ohashi PS. T-cell signalling and autoimmunity: Molecular mechanisms of disease. Nat Rev Immunol 2002; 2:427–38.

    PubMed  CAS  Google Scholar 

  91. McMahon EJ, Bailey SL, Castenada CV et al. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat Med 2005; 11:335–39.

    Article  PubMed  CAS  Google Scholar 

  92. Rao A, Luo C, Hogan PG. Transcription factors of the NFAT family: Regulation and function. Annu Rev Immunol 1997; 15:707–47.

    Article  PubMed  CAS  Google Scholar 

  93. Macian F. NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol 2005; 5:472–84.

    Article  PubMed  CAS  Google Scholar 

  94. Horsley V, Pavlath GK. NFAT: Ubiquitous regulator of cell differentiation and adaptation. J Cell Biol 2002; 156:771–4.

    Article  PubMed  CAS  Google Scholar 

  95. Masuda ES, Imamura R, Amasaki Y et al. Signalling into the T-cell nucleus: NFAT regulation. Cell Signal 1998; 10:599–611.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Podojil, J.R., Turley, D.M., Miller, S.D. (2008). Therapeutic Blockade of T- Cell Antigen Receptor Signal Transduction and Costimulation in Autoimmune Disease. In: Sigalov, A.B. (eds) Multichain Immune Recognition Receptor Signaling. Advances in Experimental Medicine and Biology, vol 640. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09789-3_18

Download citation

Publish with us

Policies and ethics