Skip to main content

Visualization of Protein Interactions in Living Cells

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 640))

Abstract

Ligand binding to cell membrane receptors sets off a series of protein interactions that convey the nuances of ligand identity to the cell interior. The information may be encoded in conformational changes, the interaction kinetics and, in the case of multichain immunoreceptors, by chain rearrangements. The signals may be modulated by dynamic compartmentalization of the cell membrane, cellular architecture, motility, and activation—all of which are difficult to reconstitute for studies of receptor signaling in vitro. In this chapter, we will discuss how protein interactions in general and receptor signaling in particular can be studied in living cells by different fluorescence imaging techniques. Particularly versatile are methods that exploit Förster resonance energy transfer (FRET), which is exquisitely sensitive to the nanometer-range proximity and orientation between fluorophores. Fluorescence correlation microscopy (FCM) can provide complementary information about the stoichiometry and diffusion kinetics of large complexes, while bimolecular fluorescence complementation (BiFC) and other complementation techniques can capture transient interactions. A continuing challenge is extracting from the imaging data the quantitative information that is necessary to verify different models of signal transduction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sigalov A. Multi-chain immune recognition receptors: Spatial organization and signal transduction. Semin Immunol 2005; 17:51–64.

    PubMed  CAS  Google Scholar 

  2. Davis SJ, Van der Merwe PA. The kinetic-segregation model: TCR triggering and beyond. Nat Immunol 2006; 7(8):803–809.

    PubMed  CAS  Google Scholar 

  3. Ghosh I, Hamilton AD, Regan L. Antiparallel leucine zipper-directed protein reassembly: Application to the green fluorescent protein. J Am Chem Soc 2000; (122):5658–5659.

    CAS  Google Scholar 

  4. Hu CD, Chinenov Y, Kerppola TK. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 2002; 9(4):789–798.

    PubMed  CAS  Google Scholar 

  5. Kerppola TK. Visualization of molecular interactions by fluorescence complementation. Nat Rev Mol Cell Biol 2006; 7(6):449–456.

    PubMed  CAS  Google Scholar 

  6. Hu CD, Kerppola TK. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 2003; 21(5):539–545.

    PubMed  CAS  Google Scholar 

  7. Grinberg AV, Hu CD, Kerppola TK. Visualization of Myc/Max/Mad family dimers and the competition for dimerization in living cells. Mol Cell Biol 2004; 24(10):4294–4308.

    PubMed  CAS  Google Scholar 

  8. Shyu YJ, Liu H, Deng X et al. Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. Biotechniques 2006; 40(1):61–66.

    PubMed  CAS  Google Scholar 

  9. Giese B, Roderburg C, Sommerauer M et al. Dimerization of the cytokine receptors gpl30 and LIFR analysed in single cells. J Cell Sci 2005; 118(Pt 21):5129–5140.

    PubMed  CAS  Google Scholar 

  10. Berland KM. Fluorescence correlation spectroscopy: A new tool for quantification of molecular interactions. Methods Mol Biol 2004; 261:383–398.

    PubMed  CAS  Google Scholar 

  11. Schwille P, Korlach J, Webb WW. Fluorescence correlation spectroscopy with single molecule sensitivity on cell and model membranes. Cytometry 1999; 36:176–182.

    PubMed  CAS  Google Scholar 

  12. Bacia K, Majoul IV, Schwille P. Probing the endocytic pathway in live cells using dual-color fluorescence cross-correlation analysis. Biophys J 2002; 83:1184–1193.

    PubMed  CAS  Google Scholar 

  13. Kohl T, Heinze KG, Kuhlemann R et al. A protease assay for two-photon crosscorrelation and FRET analysis based solely on fluorescent proteins. Proc Natl Acad Sci USA 2002; 99(19):12161–12166.

    PubMed  CAS  Google Scholar 

  14. Kuroyama H, Ikeda T, Kasai M et al. Identification of a novel isoform of ZAP-70, truncated ZAP kinase. Biochem Biophys Res Commun 2004; 315(4):935–941.

    PubMed  CAS  Google Scholar 

  15. Haustein E, Schwille P. Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy. Methods 2003; 29:153–166.

    PubMed  CAS  Google Scholar 

  16. Bacia K, Kim SA, Schwille P. Fluorescence cross-correlation spectroscopy in living cells. Nat Methods 2006; 3(2):83–89.

    PubMed  CAS  Google Scholar 

  17. Heinze KG, Jahnz M, Schwille P. Triple-color coincidence analysis: One step further in following higher order molecular complex formation. Biophys J 2004; 86:506–516.

    PubMed  CAS  Google Scholar 

  18. Muller BK, Zaychikov E, Brauchle C et al. Pulsed interleaved excitation. Biophys J 2005; 89(5): 3508–3522.

    PubMed  Google Scholar 

  19. Lamb DC, Muller BK, Brauchle C. Enhancing the sensitivity of fluorescence correlation spectroscopy by using time-correlated single photon counting. Curr Pharm Biotechnol 2005; 6(5):405–414.

    PubMed  CAS  Google Scholar 

  20. Wiseman PW, Squier JA, Ellisman MH et al. Two-photon image correlation spectroscopy and image cross-correlation spectroscopy. J Microsc 2000; 200:14–25.

    PubMed  CAS  Google Scholar 

  21. Rocheleau JV, Edidin M, Piston DW. Intrasequence GFP in class I MHC molecules, a rigid probe for fluorescence anisotropy measurements of the membrane environment. Biophys J 2003; 84(6): 4078–4086.

    PubMed  CAS  Google Scholar 

  22. Shaner NC, Steinbach PA, Tsien RY. A guide to choosing fluorescent proteins. Nat Methods 2005; 2(12):905–909.

    PubMed  CAS  Google Scholar 

  23. Giepmans BN, Adams SR, Ellisman MH et al. The fluorescent toolbox for assessing protein location and function. Science 2006; 312(5771):217–224.

    PubMed  CAS  Google Scholar 

  24. Patterson GH, Piston DW, Barisas BG. Forster distances between green fluorescent protein pairs. Anal Biochem 2000; 284(2):438–440.

    PubMed  CAS  Google Scholar 

  25. Rizzo MA, Springer GH, Granada B et al. An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 2004; 22(4):445–449.

    PubMed  CAS  Google Scholar 

  26. Kremers GJ, Goedhart J, van Munster EB et al. Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Forster radius. Biochemistry 2006; 45(21):6570–6580.

    PubMed  CAS  Google Scholar 

  27. Tramier M, Zahid M, Mevel JC et al. Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells. Microsc Res Tech 2006; 69(11):933–939.

    PubMed  CAS  Google Scholar 

  28. Peter M, Ameer-Beg SM, Hughes MK et al. Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions. Biophys J 2005; 88(2):1224–1237.

    PubMed  CAS  Google Scholar 

  29. Ganesan S, Ameer-Beg SM, Ng TT et al. A dark yellow fluorescent protein (YFP)-based Resonance Energy-Accepting Chromoprotein (REACh) for Forster resonance energy transfer with GFP. Proc Natl Acad Sci USA 2006; 103(11):4089–4094.

    PubMed  CAS  Google Scholar 

  30. Martin RM, Leonhardt H, Cardoso MC. DNA labeling in Uving cells. Cytometry A 2005; 67(l):45–52.

    PubMed  Google Scholar 

  31. Hoffmann C, Gaietta G, Bunemann M et al. A FlAsH-based FRET approach to determine G protein-coupled receptor activation in living cells. Nat Methods 2005; 2(3):171–176.

    PubMed  CAS  Google Scholar 

  32. Nakanishi J, Takarada T, Yunoki S et al. FRET-based monitoring of conformational change of the beta2 adrenergic receptor in living cells. Biochem Biophys Res Commun 2006; 343(4):1191–1196.

    PubMed  CAS  Google Scholar 

  33. Keppler A, Gendreizig S, Gronemeyer T et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 2003; 21(1):86–89.

    PubMed  CAS  Google Scholar 

  34. Keppler A, Arrivoli C, Sironi L et al. Fluorophores for live cell imaging of AGT fusion proteins across the visible spectrum. BioTechniques. 2006; 41(2):167–170,172,174-175.

    PubMed  CAS  Google Scholar 

  35. Guignet EG, Hovius R, Vogel H. Reversible site-selective labeling of membrane proteins in live cells. Nat Biotechnol 2004; 22(4):440–444.

    PubMed  CAS  Google Scholar 

  36. Lata S, Gavutis M, Tampe R et al. Specific and stable fluorescence labeling of histidinc-tagged proteins for dissecting multi-protein complex formation. J Am Chem Soc 2006; 128(7):2365–2372.

    PubMed  CAS  Google Scholar 

  37. Meyer BH, Segura JM, Martinez KL et al. FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells. Proc Natl Acad Sci USA 2006; 103(7):2138–2143.

    PubMed  CAS  Google Scholar 

  38. Grecco HE, Lidke KA, Heintzmann R et al. Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells. Microsc Res Tech 2004; 65(4–5):169–179.

    PubMed  CAS  Google Scholar 

  39. Clapp AR, Medintz IL, Mattoussi H. Forster resonance energy transfer investigations using quantum-dot fluorophores. Chemphyschem 2006; 7(1):47–57.

    PubMed  CAS  Google Scholar 

  40. Treanor B, Lanigan PM, Kumar S et al. Microclusters of inhibitory killer immunoglobulin-like receptor signaling at natural killer cell immunological synapses. J Cell Biol 2006; 174(1):153–161.

    PubMed  CAS  Google Scholar 

  41. Ng T, Squire A, Hansra G et al. Imaging protein kinase Calpha activation in cells. Science 1999; 283(5410):2085–2089.

    PubMed  CAS  Google Scholar 

  42. Haj FG, Verveer PJ, Squire A et al. Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum. Science 2002; 295(5560): 1708–1711.

    PubMed  CAS  Google Scholar 

  43. Sapsford KE, Berti L, Medintz IL. Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor-acceptor combinations. Angew Chem Int Ed 2006; 45:4562–4588.

    CAS  Google Scholar 

  44. Kubitscheck U, Kircheis M, Schweitzer-Stenner R et al. Fluorescence resonance energy transfer on single living cells. Application to binding of monovalent haptens to cell-bound immunoglobulin E. Biophys J 1991; 60(2):307–318.

    PubMed  CAS  Google Scholar 

  45. Young RM, Arnette JK, Roess DA et al. Quantitation of fluorescence energy transfer between cell surface proteins via fluorescence donor photobleaching kinetics. Biophys J 1994; 67(2):881–888.

    PubMed  CAS  Google Scholar 

  46. van Munster EB, Gadella TW. Fluorescence lifetime imaging microscopy (FLIM). Adv Biochem Eng Biotechnol 2005; 95:143–175.

    PubMed  Google Scholar 

  47. Damjanovich S, Vereb G, Schaper A et al. Structural hierarchy in the clustering of HLA class I molecules in the plasma membrane of human lymphoblastoid cells. Proc Natl Acad Sci USA 1995; 92(4):1122–1126.

    PubMed  CAS  Google Scholar 

  48. Szaba GJ, Pine PS, Weaver JL et al. Epitope mapping by photobleaching fluorescence resonance energy transfer measurements using a laser scanning microscope system. Biophys J 1992; 61(3):661–670.

    PubMed  Google Scholar 

  49. Szabo GJ, Weaver JL, Pine PS et al. Cross-linking of CD4 in a TCR/CD3-juxtaposed inhibitory state: a pFRET study. Biophys J 1995; 68(3):1170–1176.

    PubMed  CAS  Google Scholar 

  50. Jurgens L, Arndt-Jovin D, Pecht I et al. Proximity relationships between the type I receptor for Fc epsilon (Fc epsilon RI) and the mast cell function-associated antigen (MAFA) studied by donor photobleaching fluorescence resonance energy transfer microscopy. Eur J Immunol 1996; 26(1):84–91.

    PubMed  CAS  Google Scholar 

  51. Bacso Z, Bene L, Bodnar A et al. A photobleaching energy transfer analysis of CD8/MHC-I and LFA-1/ ICAM-1 interactions in CTL-target cell conjugates. Immunol Lett 1996; 54(2–3):151–156.

    PubMed  CAS  Google Scholar 

  52. Kim M, Carman CV, Springer TA. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 2003; 301(5640):1720–1725.

    PubMed  CAS  Google Scholar 

  53. Patterson GH, Lippincott-Schwartz J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 2002; 297:1873–1877.

    PubMed  CAS  Google Scholar 

  54. Demarco IA, Periasamy A, Booker CF et al. Monitoring dynamic protein interactions with photoquenching FRET. Nat Methods 2006; 3(7):519–524.

    PubMed  CAS  Google Scholar 

  55. Youvan DC, Silva CM, Bylina EJ et al. Calibration of fluorescence resonance energy transfer in microscopy using genetically engineered GFP derivatives on nickel chelating beads. Biotechnology et alia 1997; 3:1–18.

    Google Scholar 

  56. Erickson MG, Alseikhan BA, Peterson BZ et al. Preassociation of calmodulin with voltage-gated Ca(2+) channels revealed by FRET in single living cells. Neuron 2001; 31(6):973–985.

    PubMed  CAS  Google Scholar 

  57. Zal T, Zal MA, Gascoigne NR. Inhibition of T-cell receptor-coreceptor interactions by antagonist ligands visualized by live FRET imaging of the T-hybridoma immunological synapse. Immunity 2002; 16(4):521–534.

    PubMed  CAS  Google Scholar 

  58. Hoppe A, Christensen K, Swanson JA. Fluorescence resonance energy transfer-based stoichiometry in living cells. Biophys J 2002; 83(6):3652–3664.

    PubMed  CAS  Google Scholar 

  59. Zal T, Gascoigne NR. Photobleaching-corrected FRET efficiency imaging of live cells. Biophys J 2004; 86(6):3923–3939.

    PubMed  CAS  Google Scholar 

  60. Gordon GW, Berry G, Liang XH et al. Quantitative fluorescence resonance energy transfer measure-ments using fluorescence microscopy. Biophys J 1998; 74:2702–2713.

    PubMed  CAS  Google Scholar 

  61. Chen H, Puhl HL, Koushik SV et al. Measurement of FRET efficiency and ratio of donor to acceptor concentration in living cells. Biophys J 2006; 91(5):L39–41.

    PubMed  CAS  Google Scholar 

  62. Steiner M. Changes in the distribution of platelet membrane proteins revealed by energy transfer. Biochim Biophys Acta 1984; 805(1):53–58.

    PubMed  CAS  Google Scholar 

  63. Guo C, Dower SK, Holowka D et al. Fluorescence resonance energy transfer reveals interleukin (IL)-1-dependent aggregation of IL-1 type I receptors that correlates with receptor activation. J Biol Chem 1995; 270(46):27562–27568.

    PubMed  CAS  Google Scholar 

  64. Damjanovich S, Bene L, Matko J et al. Preassembly of interleukin 2 (IL-2) receptor subunits on resting Kit 225 K6 T-cells and their modulation by IL-2, IL-7, and IL-15: A fluorescence resonance energy transfer study. Proc Natl Acad Sci USA 1997; 94(24):13134–13139.

    PubMed  CAS  Google Scholar 

  65. Fernandez-Miguel G, Alarcon B, Iglesias A et al. Multivalent structure of an alphabetaT-cell receptor. Proc Natl Acad Sci USA 1999; 96(4):1547–1552.

    PubMed  CAS  Google Scholar 

  66. Block MS, Johnson AJ, Mendez-Fernandez Y et al. Monomeric class I molecules mediate TCR/CD3 epsilon/CD8 interaction on the surface of T-cells. J Immunol 2001; 167(2):821–826.

    PubMed  CAS  Google Scholar 

  67. Lee PU, Kranz DM. Allogeneic and syngeneic class I MHC complexes drive the association of CD8 and TCR on 2C T-cells. Mol Immunol 2003; 39(12):687–695.

    PubMed  CAS  Google Scholar 

  68. Buslepp J, Kerry SE, Loftus D et al. High aflinity xenoreactive TCR: MHC interaction recruits CD8 in absence of binding to MHC. J Immunol 2003; 170(1):373–383.

    PubMed  CAS  Google Scholar 

  69. Yachi PP, Ampudia J, Gascoigne NR et al. Nonstimulatory peptides contribute to antigen-induced CD8-T-cell receptor interaction at the immunological synapse. Nat Immunol 2005; 6(8):785–792.

    PubMed  CAS  Google Scholar 

  70. Zwart W, Griekspoor A, Kuijl C et al. Spatial separation of HLA-DM/HLA-DR interactions within MIIC and phagosome-induced immune escape. Immunity 2005; 22(2):221–233.

    PubMed  CAS  Google Scholar 

  71. Tolar P, Sohn HW, Pierce SK. The initiation of antigen-induced B-cell antigen receptor signaling viewed in living cells by fluorescence resonance energy transfer. Nat Immunol 2005; 6(11):1168–1176.

    PubMed  CAS  Google Scholar 

  72. Sohn HW, Tolar P, Jin T et al. Fluorescence resonance energy transfer in living cells reveals dynamic mem-brane changes in the initiation of B-cell signaling. Proc Natl Acad Sci USA 2006; 103(21):8143–8148.

    PubMed  CAS  Google Scholar 

  73. van Rheenen J, Langeslag M, Jalink K. Correcting confocal acquisition to optimize imaging of fluorescence resonance energy transfer by sensitized emission. Biophys J 2004; 86(4):2517–2529.

    PubMed  Google Scholar 

  74. Vickery SA, Dunn RC. Scanning near-field fluorescence resonance energy transfer microscopy. Biophys J 1999; 76(4):1812–1818.

    PubMed  CAS  Google Scholar 

  75. Vickery SA, Dunn RC. Combining AFM and FRET for high resolution fluorescence microscopy. J Microsc 2001; 202(Pt 2):408–412.

    PubMed  CAS  Google Scholar 

  76. Gadella TW Jr, Jovin TM. Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy. A stereochemical model for tyrosine kinase receptor activation. J Cell Biol 1995; 129(6):1543–1558.

    PubMed  CAS  Google Scholar 

  77. Verveer PJ, Wouters FS, Reynolds AR et al. Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane. Science 2000; 290(5496):1567–1570.

    PubMed  CAS  Google Scholar 

  78. Verveer PJ, Squire A, Bastiaens PI. Improved spatial discrimination of protein reaction states in cells by global analysis and dcconvolution of fluorescence lifetime imaging microscopy data. J Microsc 2001; 202 (Pt 3):451–456.

    PubMed  CAS  Google Scholar 

  79. Duncan RR, Bergmann A, Cousin MA et al. Multi-dimensional time-correlated single photon counting (TCSPC) fluorescence lifetime imaging microscopy (FLIM) to detect FRET in cells. J Microsc 2004; 215 (Pt 1):1–12.

    PubMed  CAS  Google Scholar 

  80. Elangovan M, Day RN, Periasamy A. Nanosecond fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy to localize the protein interactions in a single Uving cell. J Microsc 2002; 205(Pt 1):3–14.

    PubMed  CAS  Google Scholar 

  81. Clegg RM, Murchie Al, Zechel A et al. Fluorescence resonance energy transfer analysis of the structure of the four-way DNA junction. Biochemistry 1992; 31(20):4846–4856.

    PubMed  CAS  Google Scholar 

  82. Chen Y, Periasamy A. Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein locahzation. Microsc Res Tech 2004; 63(1):72–80.

    PubMed  CAS  Google Scholar 

  83. Krishnan RV, Masuda A, Centonze VE et al. Quantitative imaging of protein-protein interactions by multiphoton fluorescence lifetime imaging microscopy using a streak camera. J Biomed Opt 2003; 8(3):362–367.

    PubMed  CAS  Google Scholar 

  84. Peter M, Ameer-Beg SM. Imaging molecular interactions by multiphoton FLIM. Biol Cell 2004; 96(3):231–236.

    PubMed  CAS  Google Scholar 

  85. Liu Y, Walter S, Stagi M et al. LPS receptor (CD14): A receptor for phagocytosis of Alzheimer’s amyloid peptide. Brain 2005; 128(Pt 8):1778–1789.

    PubMed  Google Scholar 

  86. Clegg RM. FRET tells us about proximities, distances, orientations and dynamic properties. J Biotechnol 2002; 82(3):177–179.

    PubMed  CAS  Google Scholar 

  87. Van Munster EB, Gadella TWJ. phiFLIM: a new method to avoid aliasing in frequency-domain fluorescence lifetime imaging microscopy. J Microsc 2004; 213(Pt 1):29–38.

    PubMed  Google Scholar 

  88. Clayton AH, Hanley QS, Verveer PJ. Graphical representation and multicomponent analysis of single-frequency fluorescence lifetime imaging microscopy data. J Microsc 2004; 213(Pt l):1–5.

    PubMed  CAS  Google Scholar 

  89. Gertler A, Biener E, Ramanujan KV et al. Fluorescence resonance energy transfer (FRET) microscopy in living cells as a novel tool for the study of cytokine action. J Dairy Res 2005; 72 Spec No:14–19.

    PubMed  CAS  Google Scholar 

  90. Calleja V, Ameer-Beg SM, Vojnovic B et al. Monitoring conformational changes of proteins in cells by fluorescence lifetime imaging microscopy. Biochem J 2003; 372(Pt l):33–40.

    PubMed  CAS  Google Scholar 

  91. Suhling K, Siegel J, Phillips D et al. Imaging the environment of green fluorescent protein. Biophys J 2002; 83(6):3589–3595.

    PubMed  CAS  Google Scholar 

  92. McCann FE, Suhling K, Carlin LM et al. Imaging immune surveillance by T-cells and NK cells. Immunol Rev 2002 2; 189:179–192.

    Google Scholar 

  93. Treanor B, Lanigan PM, Suhling K et al. Imaging fluorescence lifetime heterogeneity applied to GFP-tagged MHC protein at an immunological synapse. J Microsc 2005; 217(Pt l):36–43.

    PubMed  CAS  Google Scholar 

  94. Lidke DS, Nagy P, Barisas BG et al. Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET). Biochem Soc Trans 2003; 31(Pt 5):1020–1027.

    PubMed  CAS  Google Scholar 

  95. Cohen-Kashi M, Moshkov S, Zurgil N et al. Fluorescence resonance energy transfers measurements on cell surfaces via fluorescence polarization. Biophys J 2002; 83(3):1395–1402.

    PubMed  CAS  Google Scholar 

  96. Harpur AG, Wouters FS, Bastiaens PI. Imaging FRET between spectrally similar GFP molecules in single cells. Nat Biotechnol 2001; 19(2):167–169.

    PubMed  CAS  Google Scholar 

  97. Squire A, Verveer PJ, Rocks O et al. Red-edge anisotropy microscopy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells. J Struct Biol 2004; 147(1):62–69.

    PubMed  CAS  Google Scholar 

  98. Clayton AH, Hanley QS, Arndt-Jovin DJ et al. Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM). Biophys J 2002; 83(3):1631–1649.

    PubMed  CAS  Google Scholar 

  99. Mattheyses AL, Hoppe AD, Axelrod D. Polarized fluorescence resonance energy transfer microscopy. Biophys J 2004; 87(4):2787–2797.

    PubMed  CAS  Google Scholar 

  100. Rizzo MA, Piston DW. High-contrast imaging of fluorescent protein FRET by fluorescence polarization microscopy. Biophys J 2005; 88(2):L14–16.

    PubMed  CAS  Google Scholar 

  101. Wallrabe H, Periasamy A. Imaging protein molecules using FRET and FLIM microscopy. Curr Opin Biotechnol 2005; 16(1):19–27.

    PubMed  CAS  Google Scholar 

  102. Stockholm D, Bartoli M, Sillon G et al. Imaging calpain protease activity by multiphoton FRET in living mice. J Mol Biol 2005; 346(1):215–222.

    PubMed  CAS  Google Scholar 

  103. Zal MA, Nelson M, Zal T. Interleaved dual-wavelength multiphoton imaging system for heterologous FRET and versatile fluorescent protein excitation. Proceedings of SPIE 2007; 6442.

    Google Scholar 

  104. Tertoolen LG, Blanchetot C, Jiang G et al. Dimerization of receptor protein-tyrosine phosphatase alpha in living cells. BMC Cell Biol 2001; 2:8.

    PubMed  CAS  Google Scholar 

  105. Bhatia S, Edidin M, Almo SC et al. Different cell surface oligomeric states of B7-1 and B7-2: Imphcations for signaling. Proc Natl Acad Sci USA 2005; 102(43):15569–15574.

    PubMed  CAS  Google Scholar 

  106. Wallrabe H, Stanley M, Periasamy A et al. One-and two-photon fluorescence resonance energy transfer microscopy to establish a clustered distribution of receptor-ligand complexes in endocytic membranes. J Biomed Opt 2003; 8(3):339–346.

    PubMed  CAS  Google Scholar 

  107. Wallrabe H, Chen Y, Periasamy A et al. Issues in confocal microscopy for quantitative FRET analysis. Microsc Res Tech 2006; 69(3):196–206.

    PubMed  CAS  Google Scholar 

  108. Wirz SA, Davis CN, Lu X et al. Homodimerization and internalization of galanin type 1 receptor in living CHO cells. Neuropeptides 2005; 39(6):535–546.

    PubMed  CAS  Google Scholar 

  109. Clayton AH, Walker F, Orchard SG et al. Ligand-induced dimer-tetramer transition during the activation of the cell surface epidermal growth factor receptor-A multidimensional microscopy analysis. J Biol Chem 2005; 280(34):30392–30399.

    PubMed  CAS  Google Scholar 

  110. Tenhimiberg S, Schuster B, Zhu L et al. gp130 dimerization in the absence of ligand: preformed cytokine receptor complexes. Biochem Biophys Res Commun 2006; 346(3):649–657.

    Google Scholar 

  111. Kramer JM, Yi L, Shen F et al. Evidence for ligand-independent multimerization of the IL-17 receptor. J Immunol 2006; 176(2):711–715.

    PubMed  CAS  Google Scholar 

  112. Krause CD, Mei E, Xie J et al. Seeing the Ught: Preassembly and ligand-induced changes of the interferon gamma receptor complex in cells. Mol Cell Proteomics 2002; 1(10):805–815.

    PubMed  CAS  Google Scholar 

  113. Krause CD, Mei E, Mirochnitchenko O et al. Interactions among the components of the interleukin-10 receptor complex. Biochem Biophys Res Commun 2006; 340(2):377–385.

    PubMed  CAS  Google Scholar 

  114. Nazarov PV, Koehorst RB, Vos WL et al. FRET study of membrane proteins: determination of the tilt and orientation of the N-terminal domain of M13 major coat protein. Biophys J 2007; 92(4):1296–1305.

    PubMed  CAS  Google Scholar 

  115. Mittler RS, Goldman SJ, Spitalny GL et al. T-cell receptor-CD4 physical association in a murine T-cell hybridoma: induction by antigen receptor ligation. Proc Natl Acad Sci USA 1989; 86(21):8531–8535.

    PubMed  CAS  Google Scholar 

  116. Yachi PP, Ampudia J, Zal T et al. Altered peptide ligands induce delayed CD8-T-Cell receptor Inter-action-a role for CD8 in distinguishing antigen quality. Immunity 2006; 25(2):203–211.

    PubMed  CAS  Google Scholar 

  117. Matko J, Edidin M. Energy transfer methods for detecting molecular clusters on cell surfaces. Methods Enzymol 1997; 278:444–462.

    PubMed  CAS  Google Scholar 

  118. Grailhe R, Merola F, Ridard J et al. Monitoring protein interactions in the living cell through the fluorescence decays of the cyan fluorescent protein. Chemphyschem 2006; 7(7): 1442–1454.

    PubMed  CAS  Google Scholar 

  119. Glebov OO, Nichols BJ. Lipid raft proteins have a random distribution during localized activation of the T-cell receptor. Nat Cell Biol 2004; 6(3):238–243.

    PubMed  CAS  Google Scholar 

  120. Sharma P, Varma R, Sarasij RC et al. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 2004; 116(4):577–589.

    PubMed  CAS  Google Scholar 

  121. Matko J, Bodnar A, Vereb G et al. GPI-microdomains (membrane rafts) and signaling of the multi-chain interleukin-2 receptor in human lymphoma/leukemia T-cell lines. Eur J Biochem 2002; 269(4): 1199–1208.

    PubMed  CAS  Google Scholar 

  122. Vamosi G, Bodnar A, Vereb G et al. IL-2 and IL-15 receptor alpha-subunits are coexpressed in a supramo-lecular receptor cluster in lipid rafts of T-cells. Proc Natl Acad Sci USA 2004; 101(30):11082–11087.

    PubMed  CAS  Google Scholar 

  123. Nagy P, Vereb G, Sebestyen Z et al. Lipid rafts and the local density of ErbB proteins influence the biological role of homo-and heteroassociations of ErbB2. J Cell Sci 2002; 115(Pt 22):4251–4262.

    PubMed  CAS  Google Scholar 

  124. Kiskowski MA, Kenworthy AK. In silico characterization of resonance energy transfer for disk-shaped membrane domains. Biophys J 2007; 92(9):3040–3051.

    PubMed  CAS  Google Scholar 

  125. Nazarov PV, Koehorst RB, Vos WL et al. FRET study of membrane proteins: Simulation-based fitting for analysis of membrane protein embedment and association. Biophys J 2006; 91(2):454–466.

    PubMed  CAS  Google Scholar 

  126. You X, Nguyen AW, Jabaiah A et al. Intracellular protein interaction mapping with FRET hybrids. Proc Natl Acad Sci USA 2006; 103(49):18458–18463.

    PubMed  CAS  Google Scholar 

  127. Lakowicz JR. Principles of Fluorescence Spectroscopy. New York: Plenum Publishing Corporation; 1999.

    Google Scholar 

  128. Matyus L, Szollosi J, Jenei A. Steady-state fluorescence quenching applications for studying protein structure and dynamics. J Photochem Photobiol B 2006; 83(3):223–236.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Zal, T. (2008). Visualization of Protein Interactions in Living Cells. In: Sigalov, A.B. (eds) Multichain Immune Recognition Receptor Signaling. Advances in Experimental Medicine and Biology, vol 640. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09789-3_14

Download citation

Publish with us

Policies and ethics