Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 640))

Abstract

Ligand binding to the T-cell antigen receptor (TCR) evokes receptor triggering and subsequent T-lymphocyte activation. Although TCR signal transduction pathways have been extensively studied, a satisfactory mechanism that rationalizes how the information of ligand binding to the receptor is transmitted into the cell remains elusive. Models proposed for TCR triggering can be grouped into two main conceptual categories: receptor clustering by ligand binding and induction of conformational changes within the TCR. None of these models or their variations (see Chapter 6 for details) can satisfactorily account for the diverse experimental observations regarding TCR triggering. Clustering models are not compatible with the presence of preformed oligomeric receptors on the surface of resting cells. Models based on conformational changes induced as a direct effect of ligand binding, are not consistent with the requirement for multivalent ligand to initiate TCR signaUng. In this chapter, we discuss the permissive geometry model. This model integrates receptor clustering and conformational change models, together with the existence of preformed oligomeric receptors, providing a mechanism to explain TCR signal initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reth M. Antigen receptor tail clue. Nature 1989; 338–383.

    Google Scholar 

  2. Minguet S, Swamy M, Alarcon B et al. Full activation of the T-cell receptor requires both clustering and conformational changes at CD3. Immunity 2007; 26(l):43–54.

    Article  PubMed  CAS  Google Scholar 

  3. Irvine DJ, Purbhoo MA, Krogsgaard M et al. Direct observation of ligand recognition by T-cells. Nature 2002; 419:845–849.

    Article  PubMed  CAS  Google Scholar 

  4. Wülfing C, Sumen C, Sjaastad MD et al. Costimulation and endogenous MHC ligands contribute to T-cell recognition. Nat Immunol 2002; 3:42–47.

    Article  PubMed  Google Scholar 

  5. Stefanova I, Dorfman JR, Germain RN. Self-recognition promotes the foreign antigen sensitivity of naive T-lymphocytes. Nature 2002; 420(6914):429–434.

    Article  PubMed  CAS  Google Scholar 

  6. Krogsgaard M, Li QJ, Sumen C et al. Agonist/endogenous peptide-MHC heterodimers drive T-cell activation and sensitivity. Nature 2005; 434(7030):238–243.

    Article  PubMed  CAS  Google Scholar 

  7. Boniface JJ, Rabinowitz JD, Wülfing C et al. Initiation of signal transduction through the T-cell receptor requires the peptide multivalent engagement of MHC ligands. Immunity 1998; 9:459–466.

    Article  PubMed  CAS  Google Scholar 

  8. Cochran JR, Cameron TO, Stern LJ. The relationship of MHC-peptide binding and T-cell activation probed using chemically defined MHC class II oligomers. Immunity 2000; 12(3):241–250.

    Article  PubMed  CAS  Google Scholar 

  9. Chang TW, Kung PC, Gingras SP et al. Does OKT3 monoclonal antibody react with an antigenrecognition structure on human T-cells? Proc Natl Acad Sci USA 1981; 78(3): 1805–1808.

    Article  PubMed  CAS  Google Scholar 

  10. Kaye J, Janeway CA, Jr. The Fab fragment of a directly activating monoclonal antibody that precipitates a disulfide-linked heterodimer from a helper T-cell clone blocks activation by either allogeneic la or antigen and self-la. J Exp Med 1984; 159(5):1397–1412.

    Article  PubMed  CAS  Google Scholar 

  11. Ashwell JD, Klausner RD. Genetic and mutational analysis of the T-cell antigen receptor. Annu Rev Immunol 1990; 8:139–167.

    Article  PubMed  CAS  Google Scholar 

  12. Schafer PH, Pierce SK, Jardetzky TS. The structure of MHC class II: A role for dimer of dimers. Semin Immunol 1995; 7(6):389–398.

    Article  PubMed  CAS  Google Scholar 

  13. Krishna S, Benaroch P, Pillai S. Tetrameric cell-surface MHC class I molecules. Nature 1992; 357(6374):164–167.

    Article  PubMed  CAS  Google Scholar 

  14. Fernandez-Miguel G, Alarcon B, Iglesias A et al. Multivalent structure of an alphabeta T-cell receptor. Proc Natl Acad Sci USA 1999; 96(4): 1547–1552.

    Article  PubMed  CAS  Google Scholar 

  15. Schamel WW, Arechaga I, Risueno RM et al. Coexistence of multivalent and monovalent TCRs explains high sensitivity and wide range of response. J Exp Med 2005; 202:493–503.

    Article  PubMed  CAS  Google Scholar 

  16. Punt JA, Roberts JL, Kearse KP et al. Stoichiometry of the T-cell antigen receptor (TCR) complex: each TCR/CD3 complex contains one TCRa, one TCRb and two CD3e chains. J Exp Med 1994; 180:587–593.

    Article  PubMed  CAS  Google Scholar 

  17. Call ME, Pyrdol J, Wiedmann M et al. The organizing principle in the formation of the T-cell receptor-CD3 complex. Cell 2002; 111:967–979.

    Article  PubMed  CAS  Google Scholar 

  18. Alarcon B, Swamy M, van Santen HM et al. T-cell antigen-receptor stoichiometry: preclustering for sensitivity. EMBO Rep 2006; 7(5):490–495.

    Article  PubMed  CAS  Google Scholar 

  19. Schamel WW, Reth M. Monomeric and oligomeric complexes of the B-cell antigen receptor. Immunity 2000; 13(1):5–14.

    Article  PubMed  CAS  Google Scholar 

  20. Wilson BS, PfeifFer JR, Oliver JM. Observing FcepsilonRI signaling from the inside of the masT-cell membrane. J Cell Biol 2000; 149(5):1131–1142.

    Article  PubMed  CAS  Google Scholar 

  21. Reth M, Wienands J, Schamel WW. An unsolved problem of the clonal selection theory and the model of an oligomeric B-cell antigen receptor. Immunol Rev 2000; 176:10–18.

    Article  PubMed  CAS  Google Scholar 

  22. Reth M. Oligomeric antigen receptors: a new view on signaling for the selection of lymphocytes. Trend Immunol 2001; 22(7):356–360.

    Article  CAS  Google Scholar 

  23. Gil D, Schamel WW, Montoya M et al. Recruitment of Nek by CD3 epsilon reveals a ligand-induced conformational change essential for T-cell receptor signaling and synapse formation. Cell 2002; 109(7):901–912.

    Article  PubMed  CAS  Google Scholar 

  24. Tolar P, Sohn HW, Pierce SK. The initiation of antigen-induced B-cell antigen receptor signaling viewed in living cells by fluorescence resonance energy transfer. Nat Immunol 2005; 6(11): 1168–1176.

    Article  PubMed  CAS  Google Scholar 

  25. Ortega E, Schweitzer-Stenner R, Pecht I. Possible orientational constraints determine secretory signals induced by aggregation of IgE receptors on masT-cells. EMBO J 1988; 7(13):4101–4109.

    PubMed  CAS  Google Scholar 

  26. Janeway CAJ. Ligands for the T-cell receptor: hard times for avidity models. Immunol Today 1995; 16:223–225.

    Article  PubMed  CAS  Google Scholar 

  27. Sigalov AB. Multichain immune recognition receptor signaling: DiflFerent players, same game? Trends Immunol 2004; 25(11):583–589.

    Article  PubMed  CAS  Google Scholar 

  28. van der Merwe PA. The TCR triggering puzzle. Immunity 2001; 14(6):665–668.

    Article  PubMed  Google Scholar 

  29. Risueno RM, Gil D, Fernandez E et al. Ligand-induced conformational change in the T-cell receptor associated with productive immune synapses. Blood 2005; 106(2):601–608.

    Article  PubMed  CAS  Google Scholar 

  30. Schamel WW, Risueno RM, Minguet S et al. A conformation-and avidity-based proofreading mechanism for the TCR-CD3 complex. Trends Immunol 2006; 27:176–182.

    Article  PubMed  CAS  Google Scholar 

  31. McKeithan TW. Kinetic proofreading in T-cell receptor signal transduction. Proc Natl Acad Sci USA 1995; 92(11):5042–5046.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Minguet, S., Schamel, W.W. (2008). Permissive Geometry Model. In: Sigalov, A.B. (eds) Multichain Immune Recognition Receptor Signaling. Advances in Experimental Medicine and Biology, vol 640. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09789-3_11

Download citation

Publish with us

Policies and ethics