Skip to main content

Plastic Deformation of Nanomaterials

  • Chapter
  • First Online:
Nanomaterials

Abstract

This chapter discusses the much more complex mechanical behaviors associated with inelastic deformations. Although the grain size, volume fraction and composite approaches discussed in the last chapter are still relevant, the interactions between the size scales and the deformation mechanisms involved in plasticity do not always allow the simple use of continuum approximations to predict the overall behavior. The chapter will first use a materials approach to discuss mechanisms, and then attempt to link the mechanics to these mechanisms and thus define the associated size scales.

Be faithful in small things, because it is in them that your strength lies.

Mother Theresa

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Argon, A. (2008). Strengthening Mechanisms in Crystal Plasticity. Oxford Series on Materials Modelling. Oxford: Oxford University Press.

    Google Scholar 

  • Armstrong, R. (1970). The influence of polycrystal grain size on several mechanical properties of materials. Metallurgical Transactions 1, 1169–1176.

    Google Scholar 

  • Arzt, E. (1998). Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta mater 46(16), 5611–5626.

    Article  Google Scholar 

  • Asaro, R. and V. Lubarda (2006). Mechanics of Solids and Materials. New York: Cambridge University Press.

    Book  Google Scholar 

  • Ashby, M. (1970). Deformation of plastically non-homogeneous materials. Philosophical Magazine 21(170), 399.

    Article  Google Scholar 

  • Cao, B. and K. T. Ramesh (2009). Strengthening mechanisms in cryomilled 5083 al. Scripta materialia 60, 619–622.

    Article  Google Scholar 

  • Carreker, Jr., R. and W. Hibbard Jr. (1953). Tensile deformation of high-purity copper as a function of temperature, strain rate, and grain size. Acta Metall. 1, 654–663.

    Article  Google Scholar 

  • Chew, Y., C. Wong, F. Wulff, F. Lim, and H. Goh (2007). Strain rate sensitivity and hall-petch behavior of ultrafine-grained gold wires. Thin Solid Films 516, 5376–5380.

    Google Scholar 

  • Chokshi, A., A. Rosen, J. Karch, and H. Gleiter (1989). On the validity of the hall-petch relationship in nanocrystalline materials. Scripta Materialia 23(10), 1679–1683.

    Article  Google Scholar 

  • Clifton, R. (1983). Dynamic plasticity. Transactions ASME: Journal of Applied Mechanics 50, 941–952.

    Article  Google Scholar 

  • Conrad, H. (1964). Thermally activated deformation of metals. Journal of Metals 16, 582–588.

    Google Scholar 

  • Conrad, H. (2003). Grain size dependence of the plastic deformation kinetics in cu. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 341 (1–2), 216–228.

    Article  Google Scholar 

  • Courtney, T. (2005). Mechanical Behavior of Materials. Long Grove: Waveland Press.

    Google Scholar 

  • Dalla Torre, F., E. V. Pereloma, and C. H. J. Davies (2004). Strain rate sensitivity and apparent activation volume measurements on equal channel angular extruded cu processed by one to twelve passes. Scripta Materialia 51(5), 367–371.

    Google Scholar 

  • Duesbery, M. and V. Vitek (1998). Plastic anisotropy in b.c.c. transition metals. Acta Materialia 46, 1481–1492.

    Article  Google Scholar 

  • Follansbee, P. and U. Kocks (1988). A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Metallurgica 36, 81–93.

    Article  Google Scholar 

  • Fu, H. H., D. J. Benson, and M. A. Meyers (2001). Analytical and computational description of effect of grain size on yield stress of metals. Acta Materialia 49(13), 2567–2582.

    Article  Google Scholar 

  • Gray, G. T., T. C. Lowe, C. M. Cady, R. Z. Valiev, and I. V. Aleksandrov (1997). Influence of strain rate & temperature on the mechanical response of ultrafine-grained cu, ni, and al-4cu-0.5zr. Nanostructured Materials 9(1–8), 477–480.

    Article  Google Scholar 

  • Hahn, H. and K. A. Padmanabhan (1997). A model for the deformation of nanocrystalline materials. Philosophical Magazine B-Physics of Condensed Matter Statistical Mechanics Electronic Optical and Magnetic Properties 76(4), 559–571.

    Google Scholar 

  • Hall, E. O. (1951). The deformation and ageing of mild steel .3. discussion of results. Proceedings of the Physical Society of London Section B 64(381), 747–753.

    Article  Google Scholar 

  • Han, B., Z. Lee, S. Nutt, E. Lavernia, and F. Mohamed (2003). Mechanical properties of an ultrafine-grained al-7.5 pct mg alloy. Metallurgical Materials Transactions A 34, 603.

    Article  Google Scholar 

  • Hansen, N. (2005). Boundary strengthening in undeformed and deformed polycrystals. Materials Science & Engineering A 409, 39–45.

    Article  Google Scholar 

  • Hirth, J. and J. Lothe (1992). Theory of Dislocations (Second ed.). Malabar, FL: Krieger.

    Google Scholar 

  • Jia, D., K. T. Ramesh, and E. Ma (2003). Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron. Acta Materialia 51(12), 3495–3509.

    Article  Google Scholar 

  • Karimpoor, A., K. T. Aust, and U. Erb (2007). Charpy impact energy of nanocrystalline and polycrystalline cobalt. Scripta Mater 56, 201–204.

    Article  Google Scholar 

  • Koch, C. C., D. G. Morris, K. Lu, and A. Inoue (1999). Ductility of nanostructured materials. MRS Bulletin 24(2), 54–57.

    Article  Google Scholar 

  • Kobrinsky, M. J. and C. V. Thompson (2000). Activation volume for inelastic deformation in polycrystalline ag thin films. Acta Materialia 48(3), 625–633.

    Google Scholar 

  • Kocks, U., A. Argon, and M. Ashby (1975). Thermodynamics and kinetics of slip. Progress in Materials Science 19, 1–288.

    Article  Google Scholar 

  • Koo, R. (1962). Grain size effects on the deformation of tantalum at low temperatures. Journal of the Less-Common Metals 4(2), 138–144.

    Article  Google Scholar 

  • Li, J. (1963). Petch relations and grain boundary sources. Transactions Metallurgical Society of AIME 227(1), 239.

    Google Scholar 

  • Lloyd, D. J. and S. A. Court (2003). Influence of grain size on tensile properties of al-mgalloys. Materials Science and Technology 19(10), 1349–1354.

    Article  Google Scholar 

  • Meyers, M. and E. Ashworth (1982). A model for the effect of grain size on the yield stress of metals. Philosophical Magazine A 46(5), 737–759.

    Article  Google Scholar 

  • Meyers, M. A., A. Mishra, and D. J. Benson (2006). Mechanical properties of nanocrystalline materials. Progress in Materials Science 51(4), 427–556.

    Article  Google Scholar 

  • Mughrabi, H. (1983). Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metallurgica 31(9), 1367–1379.

    Article  Google Scholar 

  • Nieh, T. G. and J. Wadsworth (1991). Hall-petch relation in nanocrystalline solids. Scripta Metallurgica Et Materialia 25(4), 955–958.

    Article  Google Scholar 

  • Ono, K. (1968). Temperature dependence of dispersed barrier hardening. Journal of Applied Physics 39(3), 1803, A8822.

    Article  Google Scholar 

  • Perez, R. J. (1997). Ph.D. Thesis, University of California.

    Google Scholar 

  • Perez, R. J. (1998). Grain growth of nanocrystalline cryomilled Fe-Al powders. Metallurgical and Materials Transactions A 29, 2469.

    Article  Google Scholar 

  • Petch, N. J. (1953). The cleavage strength of polycrystals. Journal of the Iron and Steel Institute 174(1), 25–28.

    Google Scholar 

  • Phillips, V. A. (1953). Yield-point phenomena and stretcher-strain markings in aluminium magnesium alloys. Journal of the Institute of Metals 81, 625.

    Google Scholar 

  • Robinson, J. M. (1995). In-situ deformation of aluminium alloy polycrystals observed by high-voltage electron microscopy. Materials Science and Engineering A 203, 238.

    Article  Google Scholar 

  • Rodriguez, R. (2003). Tensile and creep behavior of cryomilled Inco 625. Acta Materialia 51, 911.

    Article  Google Scholar 

  • Rosler, J. (1992). Microstructure and creep properties of dispersion-strengthened aluminum alloys. Metallurgical Transactions A 23, 1521.

    Article  Google Scholar 

  • Scattergood, R. O. and C. C. Koch (1992). A modified-model for hall-petch behavior in nanocrystalline materials. Scripta Metallurgica Et Materialia 27(9), 1195–1200.

    Article  Google Scholar 

  • Schmid, E. and W. Boas (1935). Kristallplastizität. Berlin: Springer.

    Book  Google Scholar 

  • Seeger, A. (1958). In: A. Flugge (Ed.). Encyclopedia of Physics. Vol. 7, p. 1. Berlin: Springer.

    Google Scholar 

  • Shu, J. and N. Fleck (1999). Strain gradient crystal plasticity: size-dependent deformation of bicrystals. Journal of the Mechanics and Physics of Solids 47(2), 297–324.

    Article  MATH  Google Scholar 

  • Semiatin, S. L. (2001). Plastic flow and fracture behavior of an Al-Ti-Cu nanocomposite. Scripta Materialia 44, 395.

    Article  Google Scholar 

  • Valiev, R. Z., I. V. Alexandrov, Y. T. Zhu, and T. C. Lowe (2002). Paradox of strength and ductility in metals processed by severe plastic deformation. Journal of Materials Research 17(1), 5–8.

    Article  Google Scholar 

  • Siegel, R. W. (1994). What do we really know about the atomic-scale structures of nanophase materials. Journal of Physics and Chemistry of Solids 55, 1097.

    Article  Google Scholar 

  • Sun, X. K. (2000). Preparation and mechanical properties of highly densified nanocrystalline Al. Metallurgical and Materials Transactions A 31, 1017.

    Article  Google Scholar 

  • Wang, Y. M., M. W. Chen, F. H. Zhou, and E. Ma (2002). High tensile ductility in a nanostructured metal. Nature 419(6910), 912–915.

    Article  Google Scholar 

  • Wei, Q., S. Cheng, K. T. Ramesh, and E. Ma (2004a). Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Materials Science And Engineering A-Structural Materials Properties Microstructure And Processing 381(1-2), 71–79.

    Google Scholar 

  • Wei, Q. and L. Kecskes (2008). Effect of low-temperature rolling on the tensile behavior of commercially pure tungsten. Materials Science & Engineering A 491, 62–29.

    Article  Google Scholar 

  • Witkin, D. and E. Lavernia (2006). Synthesis and mechanical behavior of nanostructured materials via cryomilling. Progress in Materials Science 51(1), 1–60.

    Article  Google Scholar 

  • Wu, T. Y., J. L. Bassani, and C. Laird (1991). Latent hardening in single-crystals .1. theory and experiments. Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences 435(1893), 1–19.

    Article  MATH  Google Scholar 

  • Zehetbauer, M. and V. Seumer (1993). Cold work-hardening in stage-iv and stage-v of fcc metals .1. experiments and interpretation. Acta Metallurgica Et Materialia 41(2), 577–588.

    Article  Google Scholar 

  • Zhou, Y., U. Erb, K. T. Aust, and G. Palumbo (2003). The effects of triple junctions and grain boundaries on hardness and young’s modulus in nanostructured ni-p. Scripta Materialia 48(6), 825–830.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.T. Ramesh .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ramesh, K. (2009). Plastic Deformation of Nanomaterials. In: Nanomaterials. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09783-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09783-1_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09782-4

  • Online ISBN: 978-0-387-09783-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics