Skip to main content

Peer-to-Peer Topology Formation Using Random Walk

  • Chapter
  • First Online:

Abstract

Peer-to-Peer (P2P) systems such as live video streaming and content sharing are usually composed of a huge number of users with heterogeneous capacities. As a result, designing a distributed algorithm to form such a giant-scale topology in a heterogeneous environment is a challenging question because, on the one hand, the algorithm should exploit the heterogeneity of users’ capacities to achieve load-balancing and, on the other hand, the overhead of the algorithm should be kept as low as possible. To meet such requirements, we introduce a very simple protocol for building heterogeneous unstructured P2P networks. The basic idea behind our protocol is to exploit a simple, distributed nature of random walk sampling to assist the peers in selecting their suitable neighbors in terms of capacity and connectivity to achieve load-balancing. To gain more insights into our proposed protocol, we also develop a detailed analysis to investigate our protocol under any heterogeneous P2P environment. The analytical results are validated by the simulations. The ultimate goal of this chapter is to stimulate further research to explore the fundamental issues in heterogeneous P2P networks.

This chapter is based on the publications in [22, 23]. This work was supported by the RGC grant 620306.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. PPLive, http://www.pplive.com

  2. BitTorrent, http://www.bittorrent.com

  3. Gnutella, http://en.wikipedia.org/wiki/Gnutella

  4. KaZaA, http://www.kazaa.com

  5. Gnutella2, http://en.wikipedia.org/wiki/Gnutella2

  6. Aldous, D., Fill, J.: Reversible markov chains and random walks on graphs. http://stat-www.berkeley.edu/users/aldous/RWG/book.html

  7. Barabási, A.L., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Physica A 272(1), 173–187 (1999)

    Article  Google Scholar 

  8. Bollobás, B.: Random Graphs, second edn. Cambridge University Press (2001)

    Google Scholar 

  9. Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., Shenker, S.: Making gnutella-like P2P systems scalable. In: Proc. ACM SIGCOMM (2003)

    Google Scholar 

  10. Cui, Y., Xue, Y., Nahrstedt, K.: Max-min overlay multicast: Rate allocation and tree construction. In: Proc. IWQoS (2004)

    Google Scholar 

  11. Dorogovtsev, S.N., Mendes, J.F.F.: Scaling properties of scale-free evolving networks: Continuous approach. Physical Review E 63(5), 056,125 (2001). DOI 10.1103/PhysRevE.63.056125

    Article  Google Scholar 

  12. Erdős, P., Rényi, A.: On random graphs. Publicationes Mathematicae 6, 290–297 (1959)

    Google Scholar 

  13. Fronczak, A., Fronczak, P., Holyst, J.A.: Average path length in random networks (2002). http://arxiv.org/abs/cond-mat/0212230

  14. Ganesan, P., Sun, Q., Garcia-Molina, H.: Yappers: A peer-to-peer lookup service over arbitrary topology. In: Proc. IEEE INFOCOM (2003)

    Google Scholar 

  15. Gkantsidis, C., Mihail, M., Saberi, A.: Hybrid search schemes for unstructured peer-to-peer networks. In: Proc. IEEE INFOCOM (2005)

    Google Scholar 

  16. Gkantsidis, C., Rodriguez, P.R.: Network coding for large scale content distribution. In: Proc. IEEE INFOCOM (2005)

    Google Scholar 

  17. Hastings, W.: Monte carlo sampling methods using markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    Article  MATH  Google Scholar 

  18. Hei, X., Liang, C., Liang, J., Liu, Y., Ross, K.: A measurement study of a large-scale P2P IPTV system. IEEE Tranactions on Multimedia 9, 1672–1687 (2007)

    Article  Google Scholar 

  19. Kim, M.S., Lam, S.S., Lee, D.: Optimal distribution tree for internet streaming media. In: Proc. International Conference on Distributed Computing Systems (2003)

    Google Scholar 

  20. Kwong, K.W., Tsang, D.H.K.: On the relationship of node capacity distribution and P2P topology formation. In: Proc. IEEE Workshop on High Performance Switching and Routing (HPSR) (2005)

    Google Scholar 

  21. Kwong, K.W., Tsang, D.H.K.: A congestion-aware search protocol for heterogeneous peer-to-peer networks. Springer Journal of Supercomputing 36(3), 265–282 (2006)

    Article  Google Scholar 

  22. Kwong, K.W., Tsang, D.H.K.: Application-aware topology formation algorithm for peer-to-peer networks. In: Proc. IEEE International Conference on Communications (ICC) (2007)

    Google Scholar 

  23. Kwong, K.W., Tsang, D.H.K.: Building heterogeneous peer-to-peer networks: Protocol and analysis. IEEE Transcations on Networking 16, 281–292 (2008)

    Article  Google Scholar 

  24. Law, C., Siu, K.Y.: Distributed construction of random expander networks. In: Proc. IEEE INFOCOM (2003)

    Google Scholar 

  25. Loo, B.T., Huebsch, R., Stoica, I., Hellerstein, J.M.: The case for a hybrid p2p search infrastructure. In: Proc. International Workshop on Peer-to-Peer Systems (2004)

    Google Scholar 

  26. Lovász, L.: Random walks on graphs: A survey. In: Combinatorics, vol. 2, pp. 1–46. Bolyai Society Mathematical Studies (1993)

    Google Scholar 

  27. Luan, H., Kwong, K.W., Huang, Z., Tsang, D.H.K.: P2P live streaming towards best video quality. In: Proc. Special Session on P2P Media Streaming, IEEE Consumer Communications and Networking Conference (2008)

    Google Scholar 

  28. Luan, H., Tsang, D.H.K., Kwong, K.W.: Media overlay construction via a markov chain monte carlo method. In: ACM SIGMETRICS Performance Evaluation Review, vol. 34, pp. 9–11 (2006)

    Article  Google Scholar 

  29. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstructured peer-to-peer networks. In: Proc. ACM International Conference on Supercomputing (2002)

    Google Scholar 

  30. Meo, M., Milan, F.: A rational model for service rate allocation in peer-to-peer networks. In: Proc. IEEE Global Internet Symposium (2005)

    Google Scholar 

  31. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of state calculations by fast computing machines. The Journal of Chemical Physics 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  32. Pandurangan, G., Raghavan, P., Upfal, E.: Building low-diameter peer-to-peer networks. IEEE Journal on Selected Areas in Communications 21, 995–1002 (2003)

    Article  Google Scholar 

  33. Pyun, Y.J., Reeves, D.S.: Constructing a balanced, (log(n)/loglog(n))-diameter super-peer topology for scalable P2P systems. In: Proc. IEEE P2P Computing (2004)

    Google Scholar 

  34. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-addressable network. In: Proc. ACM SIGCOMM (2001)

    Google Scholar 

  35. Saroui, S., Gummadi, P.K., Gribble, S.D.: Measurement study of peer-to-peer file sharing systems. In: Proc. Multimedia Computing and Networking (2002)

    Google Scholar 

  36. Roychowdhury, V.: Scale-free and stable structures in complex ad hoc networks. In: Physical Review E, vol. 69 (2004)

    Google Scholar 

  37. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-to-peer lookup service for internet applications. In: Proc. ACM SIGCOMM (2001)

    Google Scholar 

  38. Stutzbach, D., Zhao, S., Rejaie, R.: Characterizing files in the modern gnutella network. Multimedia Systems Journal (2007)

    Google Scholar 

  39. Wouhaybi, R.H., Campbell, A.T.: Phenix: Supporting resilient low-diameter peer-to-peer topologies. In: Proc. IEEE INFOCOM (2004)

    Google Scholar 

  40. Yang, X., Veciana, G.: Service capacity of peer to peer networks. In: Proc. IEEE INFOCOM (2004)

    Google Scholar 

  41. Zhang, X., Liu, J., Li, B., Yum, T.P.: Coolstreaming/donet: A data-driven overlay network for peer-to-peer live media streaming. In: Proc. IEEE INFOCOM (2005)

    Google Scholar 

  42. Zhong, M., Shen, K., Seiferas, J.: Non-uniform random membership management in peer-to-peer networks. In: Proc. IEEE INFOCOM (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kin-Wah Kwong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kwong, KW., Tsang, D.H. (2010). Peer-to-Peer Topology Formation Using Random Walk. In: Shen, X., Yu, H., Buford, J., Akon, M. (eds) Handbook of Peer-to-Peer Networking. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09751-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09751-0_7

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09750-3

  • Online ISBN: 978-0-387-09751-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics