Skip to main content

Indicators and Endpoints for Risk-Based Decision Processes with Decision Support Systems

  • Chapter
  • First Online:
  • 1142 Accesses

Abstract

The decision process for contaminated sites is composed of two important phases, assessment and management. In the first phase, relevant information is collected and processed by experts on all the involved aspects of the decision problem; in the second phase, the same information is evaluated, weighted and communicated by decision-makers and stakeholders. The complexity of both phases may be reduced by adopting suitable indicators and endpoints, and including them in Decision Support Systems (DSSs).

In the assessment phase, indicators can support the definition and description of the information to be analysed. The input information may range from environmental to socio-economic, and may have different levels of integration and detail. Indicators can be used to reduce abundant and diverse information into a manageable and organized scheme. In the management phase, indicators can be used by decision-makers and stakeholders to characterize predicted scenarios and to evaluate management alternatives (e.g. for the selection of remediation technologies). Moreover, indicators can be valid instruments for communication with the public. They serve to compact and interpret assessment results and provide them in easily understood forms. In all these functions, the utility of indicators is enhanced by inclusion in DSSs.

This chapter is an overview of the theory and practise of indicators and endpoints for the assessment and management of contaminated sites. It illustrates the state-of-the-art of indicators development and proposes definitions and methodological approaches. It then presents the indicators used in the assessment phase, as analytical instruments that define relevant aspects, such as environmental assessment endpoints, environmental quality (for both water and soil) and human health. Finally, indicators for the management phase, where the elaboration and evaluation of management alternatives is the central objective, are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • ADEC (Alaska Department of Environmental Conservation) (2000) User's Guide for Selection and Application of Default Assessment Endpoints and Indicator Species in Alaska Ecoregions. Available at http://www.state.ak.us/local/akpages/EN.CONSERV/dspar/csites/ind docs.htm.

  • Armitage, P.D., Moss, D., Wright, J.F., Furse, M.Y. (1983) The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running waters. Water Research 17:333–347.

    Article  CAS  Google Scholar 

  • Aven, T., Kørte, J. (2003) On the use of risk and decision analysis to support decision-making. Reliability Engineering and System Safety 79, 289–299.

    Article  Google Scholar 

  • Barbour, M.T., Gerritsen, J., Snyder, B.D., Stribling, J.B. (1999) Rapid Bioassessment Protocols for Use in Streams and Wadeble Rivers: Peryphyton, Benthic Macroinvertebrates, and Fish. Second Edition. US Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Bockstaller C., Girardin, P. (2003) How to validate environmental indicators. Agricultural Systems 76:639–653.

    Article  Google Scholar 

  • Bonano, E.J., Apostolakis, G.E., Salter, P.F., Ghassemi, A., Jennings, S. (2000) Application of risk assessment and decision analysis to the evaluation, ranking and selection of environmental remediation alternatives. Journal of Hazardous Materials 71:35–57.

    Article  CAS  Google Scholar 

  • Brettum, P., (1989) Planteplankton som indicator pá vannkvalitet I norke innsjøer. Planteplankton (Algae as indicators of water quality in Norwegian lakes). Niva Rapport 0-86116:111p.

    Google Scholar 

  • Breure, A.M., Mulder, C., Boembke, J., Ruf, A. (2005) Ecological classification and assessment concepts in soil protection. Ecotoxicology and Environmental Safety 62:211–229.

    Article  CAS  Google Scholar 

  • Briggs, D. (2003). Making a Difference: Indicators to Improve Children’s Environmental Health. World Health Organization, Geneva.

    Google Scholar 

  • Buffagni, A., Erba, S., Cazzola, M., Murray Bligh, J., Soszka, H., Genoni, P. (2006) The STAR common metrisc approach to the WFD intercalibration process: full application for small, lowland rivers in three European countries. Hydrobiologia (special issue) 566(1):379–399.

    Google Scholar 

  • Burton, G.A., Chapman, P.M., Smith, E.P. (2002) Weight-of-Evidence approaches for assessing ecosystem impairment. Human and Ecological Risk Assessment 8:1657–1673.

    Article  CAS  Google Scholar 

  • Carlson, R.E. (1977) A trophic state index for lakes. Limnology and Oceanography 22:361–369.

    Article  CAS  Google Scholar 

  • Corvalàn, C., Briggs, D., Kjellstrom, T. (1996) Development of environmental health indicators. In: Briggs, D., Corvalàn, C., Nurminem, M. eds, Linkage Methods for Environmental and Health Analysis. General Guidelines. World Health Organization, Geneva, pp. 19–53.

    Google Scholar 

  • Corvalàn, C., Kjellström, J., Briggs, D. (1997) Health and environmental indicators in relation to sustainable development. In: Moldan, B., Billharz, S. eds,. Sustainable Indicators. Report on the Project on Indicators of Sustainable Development, Scientific Committee on Problems of the Environment (SCOPE), Wiley.

    Google Scholar 

  • Dale, V.H., Beyeler, S.C. (2001) Challenges in the development and use of ecological indicators. Ecological Indicators 1:3–10.

    Article  Google Scholar 

  • DEV (1992) Biologische-oekologische Gewaessergueteuntersuchung: Bestimmung des Saprobienindex (M2). In Deutsche Einheisverfahren zur Wasser-, Abwasser- und Schlammuntersuchung. Deutsche Institut fur Normung, VCH Verlagsgesellschaft mbH, Weinheim, pp. 1–13.

    Google Scholar 

  • EEA (European Environment Agency) (1999) Environmnetal Indicators: Typology and Overview. Technical Report n. 25. Copenaghen, Denmark.

    Google Scholar 

  • EEA (European Environmental Agency) (2005) EEA Core Set of Indicators. Technical Report n.1/2005. ISSN 1725-2237. European Environmental Agency, Office for Official Publications of the European Communities, Luxembourg.

    Google Scholar 

  • EEA (European Environment Agency) (2007) Progress in Management of Contaminated Sites (CSI 015) – Assessment Published in August 2007. Copenaghen, Denmark.

    Google Scholar 

  • European Commission (2000) Directive 2000/60/CE of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities L327, 22/12/2000.

    Google Scholar 

  • Fränzle, O., (2003) Bioindicators and environmental stress assessment. In: Markert, B.A., Zechmeister, A.M. eds, Bioindicators & Biomanitors. Principles, Concepts and Applications, Elsevier, Amsterdam (The Netherland), pp. 41–84.

    Chapter  Google Scholar 

  • Ghetti, P.F. (1999) Le reti ecologiche: struttura e funzioni. In Provincia di Milano, Atti del seminario Reti Ecologiche in Aree Urbanizzate, Milan, Franco Angeli Editore, pp. 19–21, in italian.

    Google Scholar 

  • Graefe, U., Schmelz, R. (1999) Tabellarische Zusammenstellung der ökologischen Ansprüche und Lebensformtypen terrestrischer Enchytraeenarten. Newsletter on Enchytraeidae 6:59–68.

    Google Scholar 

  • Haddix AC, Teutsch SM, Shaffer PA, Dunet DO (1996) Prevention Effectiveness: A Guide to Decision Analysis and Economic Evaluation, Oxford University Press, UK.

    Google Scholar 

  • Hofmann, G. (1994) Aufwuchs-Diatomeen in Seen und ihre Eignung als Indikatoren der Trophie. Bibliotheca Diatomologica 30, Cramer, Berlin, 241 pp.

    Google Scholar 

  • Holmes, N.T.H., Newman, J.R., Chadd, S., Rouen, K.J., Saint, L., Dawson, F.H. (1999). Mean Trophic Rank: A User's Manual. Environment Agency R&D Technical Report E38.

    Google Scholar 

  • Insam, H., Haselwandter, K. (1989) Metabolic quotient of the soil microflora in relation to plant succession. Oecologia 79:174–178.

    Article  Google Scholar 

  • ISO (International Organisation for Standardisation) (2001) Soil Quality: Determination of Abundance and Activity of Soil Microflora Using Respiration Curves. ISO/DIS 17155.

    Google Scholar 

  • Kaiser, E.-A., Müller, T., Joergensen, R.G., Insam, H., Heinemeyer, O. (1992) Evaluation of methods to estimate the soil microbial biomass and the relationship with soil texture and organic matter. Soil Biology and Biochemistry 24:675–683.

    Article  CAS  Google Scholar 

  • Karr, J.R. (1981) Assessment of biotic integrity using fish communities. Fisheries 6:21–27.

    Article  Google Scholar 

  • Karr JR, Fausch KD, Angermeier PL, Yant PR, Schlosser IJ (1986) Assessing biological integrity in running waters; a method and its rationale. Illinois Natural History Survey Special Pub. 5., Champaigne, IL.

    Google Scholar 

  • Kelly, M.G. (1998) Use of the trophic diatom index to monitor eutrophication in rivers. Water Research 32:236–242.

    Article  CAS  Google Scholar 

  • Kelly, M.G., Whitton, B.A. (1998). Biological monitoring of eutrophication in rivers. Hydrobiologia 384:55–67.

    Article  Google Scholar 

  • Khadam, I., Kaluarachchi, J.J. (2003) Applicability of risk-based management and the need for risk-based economic decision analysis at hazardous waste contaminated sites. Environment International 29:503–519.

    Article  CAS  Google Scholar 

  • Kiker, G.A., Bridges, T.S., Varghese, A., Seager, T.P., Linkov, I. (2005) Application of multicriteria decision analysis in environmental decision making. Integrated Environmental Assessment and Management 2:95–108.

    Google Scholar 

  • Lorenz, V. (2003). Bioindicators for ecosystem management, with special reference to freshwater ecosystems. In: Markert, B.A., Zechmeister, A.M. eds, Bioindicators & Biomanitors. Principles, Concepts and Applications, Elsevier, Amsterdam (The Netherland), pp. 123–152.

    Chapter  Google Scholar 

  • Myers, O.B. (1999) On aggregating species for risk assessment. Human and Ecological Risk Assessment 5(3):559–574

    Google Scholar 

  • Niemeijer, D. (2002) Developing indicators for environmental policy: data-driven and theory-driven approaches examine by example. Environmental Science and Policy 5:91–103.

    Article  Google Scholar 

  • Nijboer, M.N. (1998) REC: a decision support system for comparing soil remediation options based on risk reduction, environmental merit and costs. Contaminated Soil. Thomas Telford, London, 1173–1174.

    Google Scholar 

  • Nortcliff, S. (2002) Standardisation of soil quality attributes. Agriculture, Ecosystems and Environment 88:161–168.

    Article  Google Scholar 

  • OECD (1993) Core set of indicators for environmental performance review. Environment Monographs n. 83, OCDE/GD(93)179, Organization for Economic Co-operation and Development, Paris, France.

    Google Scholar 

  • OECD (2002) Environmental indices. ENV/EPOC/SE(2001)2/FINAL, Organization for Economic Co-operation and Development, Paris, France.

    Google Scholar 

  • OSWER (2005) Guidance for developing ecological soil screening levels, revised. OSWER Directive 9285.7–55. U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Parsons, M., Thoms, M., Norris, R. (2002) Australian River Assessment System: AusRivAS Physical Assessment Protocol. Monitoring River Heath Initiative Technical Report no 22, Commonwealth of Australia and University of Canberra, Canberra.

    Google Scholar 

  • Pond, K., Kim, R., Carroquino, M., Pirard, P., Gore, F., Cucu, A., Nemer, L., MacKay, M., Smedje, G., Georgellis, A., Dalbokova, D., Krzyzanowsi, M. (2007) Workgroup report: developing environmental health indicators for European children: World Health Organization working group. Environmental Health Perspectives 115(9):1376–1382.

    Google Scholar 

  • Posthuma, L., Suter, G.W. II, Traas, T.P. (2002) Species Sensitivity Distributions in Ecotoxicology, Lewis Publisher, Boca Raton, FL, USA.

    Google Scholar 

  • Raven, P.J., Holmes, N.T.H., Dawson, F.H., Fox, P.J.A., Eeverard, M., Fozzard, I.R., Rouen, K.J. (1998). River Habitat Quality – The Physical Character of Rivers and Streams in the UK and Isle of Man. River Habitat Survey Report No. 2. May 1998. Bristol (Environment Agency).

    Google Scholar 

  • Römbke, J., Beck, L., Förster, B., Fründ, H.C., Horak, F., Ruf, A., Rosciczewski, K., Scheurig, M., Woas, S. (1997) Boden als Lebensraum für Bodenorganismen und die bodenbiologische Standortklassifikation: Eine Literaturstudie. Texte und Berichte zum Bodenschutz 4/97. Landesanstalt Umweltschutz Baden- Württemberg (Karlsruhe).

    Google Scholar 

  • Schouten, A.J., Bloem, J., Breure, A.M., Didden, W.A.M., Van Esbroek, M., De Ruiter, P.C., Rutgers, M., Siepel, H., Velvis, H. (2001). Pilotproject Bodembiologische Indicator voor Life Support Functies van de bodem. RIVM Report 607604001.

    Google Scholar 

  • Sinnige, N., Tamis, W., Klijn, F. (1992) Indeling van Bodemfauna in ecologische Soortgroepen. Centrum voor Milieukunde, Rijksuni- versiteit Leiden Report No. 80.

    Google Scholar 

  • Suter, G.W., II (1989) Ecological endpoints. In: Warren-Hicks, W., Parkhurst, B.R., Baker, S.S. Jr. eds, Ecological Assessment of Harardous Waste Sites: A Field and Laboratory Reference Document. EPA 600/3-89/013. Corvallis Environmental Research Laboratory, Corvallis, OR, pp. 2-1–2-28.

    Google Scholar 

  • Suter, G.W., II (2001) Applicability of indicator monitoring to ecological risk assessment. Ecological Indicators 1:101–112.

    Google Scholar 

  • Suter, G.W., II, Sample, B.E., Jones, D.S., Ashwood, T.L. (1994) Approach and strategy for performing ecological risk assessments for the Department of Energy's Oak Ridge Reservation. ES/ER/TM-33/R1. Environmental Restoration Division, Oak Ridge National Laboratory, Oak Ridge, TN.

    Google Scholar 

  • Turnhout, E., Hisschemoeller, M., Eijsacker, H. (2007) Ecological indicators: between the two fires of science and policy. Ecological indicators 7:215–228.

    Article  Google Scholar 

  • USEPA (US Environmental Protection Agency) (1993) Wildlife exposure factors handbook. EPA/600/R-93/187. U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Washington, DC.

    Google Scholar 

  • USEPA (U.S. Environmental Protection Agency) (1998) Guidelines for ecological risk assessment. EPA/630/R-95/002F. Risk Assessment Forum, Washington, DC.

    Google Scholar 

  • USEPA (U.S. Environmental Protection Agency) (2000). National Water Quality Inventory. EPA/305b/2000 Washington DC.

    Google Scholar 

  • USEPA (U.S. Environmental Protection Agency) (2003) Generic Ecological Assessment Endpoints (GEAEs) for Ecological Risk Assessment. EPA/630/P-02/004B. U.S. Environmental Protection Agency, Risk Assessment Forum, Washington, DC.

    Google Scholar 

  • Vik, E.A., Bardos, P., Brogan, J., Edwards, D., Gondi, F., Henrysson, T., Jensen, B.K., Jorge, C., Mariotti, C., Nathanail, P., Papassiopi, N. (2001) Towards a framework for selecting remediation technologies for contaminated sites. Land Contamination and Reclamation 9(1):119–127.

    Google Scholar 

  • Vollenweider, R.A., Giovanardi, F., Montanari, G., Rinaldi, A. (1998). Characterization of the trophic conditions of marine coastal waters with special reference the NW Adriatic Sea: Proposal for a trophic scale, turbidity and generalized water quality index. Environmetrics 9:329–357.

    Article  CAS  Google Scholar 

  • Weeks, J.M., Hopkin, S.P., Wright, J.F., Black, H., Eversham, B.C., Roy, D., Svendsen, C. (1998) A Demonstration of the Feasibility of SOILPACS. HMIP/CPR2/41/1/247.

    Google Scholar 

  • WHO (2002) Health in Sustainable Development Planning: The Role of Indicators. World Health Organization, Geneva.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Agostini, P., Suter, G.W., Gottardo, S., Giubilato, E. (2009). Indicators and Endpoints for Risk-Based Decision Processes with Decision Support Systems. In: Marcomini, A., Suter II, G., Critto, A. (eds) Decision Support Systems for Risk-Based Management of Contaminated Sites. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09722-0_5

Download citation

Publish with us

Policies and ethics