Skip to main content

SADA: Ecological Risk Based Decision Support System for Selective Remediation

  • Chapter
  • First Online:

Abstract

Spatial Analysis and Decision Assistance (SADA) is freeware that implements terrestrial + criteria were applied to determine a spatially explicit remedial design that reduced shrew exposures to protective levels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agency for Toxic Substances and Disease Registry (ATSDR), 1989. Toxicological profile for selected PCBs (Aroclor 1260, 1254, 1248, 1242, 1232, 1221 and 1016), Atlanta, Georgia, ATDSR/TP-88/21.

    Google Scholar 

  • Anderson, M.C., Thompson, B., Boykin, K., 2004. Spatial risk assessment across large landscapes with varied land use: lessons from a conservation assessment of military lands. Risk Analysis, 24(5):1231–1242.

    Article  Google Scholar 

  • Aulerich, R.J., Ringer, R.K., 1977. Current status of PCB toxicity to mink, and effect on their reproduction. Archives of Environmental Contamination and Toxicology, 6:279–292.

    Article  CAS  Google Scholar 

  • Barron, M.G., Wharton, S.R., 2005. Survey of methodologies for developing media screening values for ecological risk assessment. Integrated Environmental Assessment and Management, 1(4):320–332.

    Article  CAS  Google Scholar 

  • Blacker, S.B., Goodman, D., 1994. Case study: application at a Superfund cleanup. Environmental Science and Technology, 28(11):471A–477A.

    Article  CAS  Google Scholar 

  • Bradbury, S.P., Feijtel, T.C.J., van Leeuwen, C.J., 2004. Meeting the needs of ecological risk assessment in a regulatory context. Environmental Science and Technology, 38:463A–470A.

    Article  CAS  Google Scholar 

  • Brakewood, L.H., Grasso, D., 2000. Floating spatial domain averaging in surface soil remediation. Environmental Science and Technology, 34:3837–3842.

    Article  CAS  Google Scholar 

  • Carpenter, S.R., DeFries, R., Dietz, T., Mooney, H.A., Polasky, S., Reid, W.V., Scholes, R.J., 2006. Millennium ecosystem assessment: research needs. Science, 314:257–258.

    Article  CAS  Google Scholar 

  • Chow, T.E., Gaines, K.F., Hodgson, M.E., Wilson, M.D., 2005. Habitat and exposure modeling for ecological risk assessment: A case study for the raccoon on the Savannah River Site. Ecological Modelling, 189:151–167.

    Article  CAS  Google Scholar 

  • Crommentuijn, T., Sijm, D., de Bruijn, J., van Leeuwen, K., de Plassche, E., 2000a. Maximum permissible and negligible concentrations for some organic substances and pesticides. Journal of Environmental Management, 58:297–312.

    Google Scholar 

  • Crommentuijn, T., Sijm, D., de Bruijn, J., van Leeuwen, K., de Plassche, E., 2000b. Maximum permissible and negligible concentrations for metals and metalloids in the Netherlands, taking into account background concentrations. Journal of Environmental Management, 60:121–143.

    Google Scholar 

  • Dearfield, K.L., Bender, E.S., Kravitz, M., Wentsel, R., Slimak, M.W., Farland, W.H., Gilman, P., 2005. Ecological risk assessment issues identified during the U.S. Environmental Protection Agency’s examination of risk assessment practices. Integrated Environmental Assessment and Management, 1(1):73–76.

    Article  Google Scholar 

  • DeMott, R.P., Balaraman, A., Sorensen, M.T., 2005. The future direction of ecological risk assessment in the United States: Reflecting on the U.S. Environmental Protection Agency’s “Examination of Risk Assessment Practices and Principles.” Integrated Environmental Assessment and Management, 1(1):77–82.

    Article  Google Scholar 

  • Efroymson, R.A., Will, M.E., Suter, G.W., Wooten, A.C., 1997a. Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Terrestrial Plants: 1997 Revision. Oak Ridge National Laboratory, Oak Ridge, TN. ES/ER/TM-85/R3.

    Google Scholar 

  • Efroymson, R.A., Will, M.E., Suter, G.W., 1997b. Toxicological Benchmarks for Contaminants of Potential Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Processes: 1997 Revision. Oak Ridge National Laboratory, Oak Ridge, TN. ES/ER/TM-126/R2.

    Google Scholar 

  • Eisler, R., 1986. Polychlorinated Biphenyl Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service, Patuxent Wildlife Research Center, Laurel, MD. Biological Report 85 (1.7).

    Google Scholar 

  • Goovaerts, P., 1997. Geostatistics for Natural Resource Evaluation. Oxford University Press, New York.

    Google Scholar 

  • Gotway, C., 1991. Fitting semi-variogram models by weighted least squares. Computers and Geosciences, 17(1):171–172.

    Article  Google Scholar 

  • Halbrook, R.S., Aulerich, R.J., Bursian, S.J., Lewis, L., 1999. Ecological risk assessment in a large river-reservoir: 8. Experimental study of the effects of polychlorinated biphenyls on reproductive success in mink. Environmental Toxicology and Chemistry, 18:649–654.

    CAS  Google Scholar 

  • Hope, B.K., 2000. Generating probabilistic spatially-explicit individual and population exposure estimates for ecological risk assessments. Risk Analysis, 20:573–590.

    Article  CAS  Google Scholar 

  • Hope, B.K., 2001. A case study comparing static and spatially explicit ecological exposure analysis models. Risk Analysis, 21(6):1001–1010.

    Article  CAS  Google Scholar 

  • Kelly, B.C., Ikonomou, M.G., Blair, J.D., Morin, A.E., Gobas, F.A.P.C., 2007. Food web-specific biomagnifications of persistent organic pollutants. Science, 317:236–239.

    Article  CAS  Google Scholar 

  • Landis, W., McLaughlin, J., 2000. Design criteria and derivation of indicators for ecological position, direction, and risk. Environmental Toxicology and Chemistry, 19(4):1059–1065.

    Article  CAS  Google Scholar 

  • Legendre, P., Legendre, L., 1998. Numerical Ecology. Elsevier, Amsterdam.

    Google Scholar 

  • Mackay, D., 1982. Correlation of bioconcentration factors. Environmental Science and Technology, 16:274–278.

    Article  CAS  Google Scholar 

  • Miller, H., Getz, L.L., 1977. Factors influencing local distribution and species diversity of forest small mammals in New England. Canadian Journal of Zoology, 55:806–814.

    Article  Google Scholar 

  • Prokop, G., Schamann, M., Edelgaard, I., 2000. Management of contaminated sites in Western Europe. Europe Environment Agency, Topic Report No. 13.

    Google Scholar 

  • Purucker, S.T, Welsh, C.J.E., Stewart, R.N., Starzec, P., 2007. Use of habitat-contamination spatial correlation to determine when to perform a spatially explicit ecological risk assessment. Ecological Modelling, 204(1–2):180–192.

    Article  Google Scholar 

  • Purucker, S.T., Stewart, R.N., Wulff, J., 2008. A spatial decision support system for efficient environmental assessment and remediation. In: Madden, M. & Allen, E. (eds.), Landscape Analysis Using Spatial Tools. Springer-Verlag.

    Google Scholar 

  • Ringer, R.K., Aulerich, R.J., Blevins, M.R., 1981. Biologic and toxic effects of PCBs and PBBs on mink and ferret- a review. In: Khan, M.A.Q. & Stomton, R.M.H. (eds.), Toxicology of Halogenated Hydrocarbons: 329–343. Pergamon, New York, USA.

    Google Scholar 

  • Sample, B.E., Opresko, D.M., Suter, G.W., 1996. Toxicological Benchmarks for Wildlife: 1996 Revision. Oak Ridge National Laboratory, ES/ER/TM-86/R3, Oak Ridge National Laboratory, Oak Ridge, TN.

    Book  Google Scholar 

  • Stewart, R.N., Purucker, S.T., Powers, G.E., 2007. SADA: A Freeware Decision Support Tool Integrating GIS, Sample Design, Spatial Modeling, and Risk Assessment. Proceedings of the International Symposium on Environmental Software Systems, Prague, Czech Republic.

    Google Scholar 

  • Suter, G.W. II, 1993. Ecological Risk Assessment. Lewis Publishers, Boca Raton, FL.

    Google Scholar 

  • Suter, G.W. II, Vermeire, T., Munns, W.R. Jr., Sekizawa, J., 2003. Framework for the integration of heath and ecological risk. Human and Ecological Risk Assessment, 9(1):281–301.

    Article  Google Scholar 

  • Swartjes, F.A., 1999. Risk-based assessment of soil and groundwater quality in the Netherlands: standards and remediation urgency. Risk Analysis, 19(6):1235–1249.

    CAS  Google Scholar 

  • Tannenbaum, L.V., Johnson, M.S., Bazar, M., 2003. Application of the hazard quotient method in remedial decisions: A comparison of human and ecological risk assessments. Human and Ecological Risk Assessment, 9(1):387–401.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (USEPA), 1980. Ambient Water Quality Criteria for Polychlorinated Biphenyls. Office of Water Regulations and Standards. Office of Research and Development. Carcinogen Assessment Group. Environmental Research Laboratories. EPA/440/5-80-068.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA), 1992. Framework for Ecological Risk Assessment. Risk Assessment Forum, Washington DC. EPA/630/R-92/001.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA), 1993. Wildlife Exposure Factors Handbook. Office of Research and Development, U.S. Washington, DC, EPA/600/R-93/187a.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA), 1997. Ecological risk assessment guidance for superfund: process for designing and conducting ecological risk assessments – interim final. EPA 540-R-97-006, OSWER 9285.7-25.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA), 1998. Guidelines for Ecological Risk Assessment. EPA 630/R-95/002F.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA), 1999. Ecological screening levels for RCRA Appendix IX hazardous constituents. Washington DC, Region V. Work draft, August 22, 2003 update.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA), 2001a. Supplemental Guidance to RAGS: Region 4 Bulletins, Ecological Risk Assessment. Originally published: EPA Region IV. 1995. Ecological Risk Assessment Bulletin No. 2: Ecological Screening Values. U.S. Environmental Protection Agency Region 4, Waste Management Division, Atlanta, GA.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA), 2001b. The role of screening-level risk assessments and refining contaminants of concern in baseline ecological risk assessments. ECO Update. Washington DC, Office of Solid Waste and Emergency Response. EPA 540/F-01/014.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA), 2002. Guidance on Choosing a Sampling Design for Environmental Data Collection. Office of Environmental Information, Washington, DC. EPA QA/G-5S.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA), 2003. Guidance for Developing Ecological Soil Screening Levels. Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, DC. OSWER Directive 9285.7-55. November 2003.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA), 2006. Data Quality Assessment: A Reviewer’s Guide. Office of Environmental Information, Washington, DC. EPA QA/G-9R.

    Google Scholar 

  • U.S. Office of Technology Assessment (USOTA), 1985. Superfund Strategy. Washington, U.S. Congress, Office of Technology Assessment, DC. OTA-ITE-252.

    Google Scholar 

  • Wang, D., Buchanan, N., Berry, M.W., Carr, E., Comiskey, J.E., Gross, L.J., Shaw, S.-L., 2006. A GIS-enabled distribution simulation framework for high-performance ecosystem modeling. Proceedings of the ESRI International User Conference, August 11–15, 2006.

    Google Scholar 

  • Wind, T., 2004. Prognosis of environmental concentrations by geo-referenced and generic models: a comparison of GREAT-ER and EUSES exposure simulations for some consumer product ingredients in the Itter. Chemosphere, 54:1145–1153.

    Article  CAS  Google Scholar 

  • Wren, C.D., Hunter, D.B., Leatherland, J.F., Stoakes, P.F., 1987. The effects of polychlorinated biphenyls and methylmercury, singularly and in combination on mink. II: reproduction and kit development. Archives of Environmental Contamination and Toxicology, 16:449–454.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Comments from Lou Gross, Tom Hallam, Suzanne Lenhart, Gary McCracken, Fran Rauschenberg, and Robert Swank improved the manuscript. This chapter has been reviewed in accordance with the U.S. Environmental Protection Agency’s peer and administrative review policies and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Thomas Purucker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Purucker, S.T., Stewart, R.N., Welsh, C.J. (2009). SADA: Ecological Risk Based Decision Support System for Selective Remediation. In: Marcomini, A., Suter II, G., Critto, A. (eds) Decision Support Systems for Risk-Based Management of Contaminated Sites. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09722-0_11

Download citation

Publish with us

Policies and ethics