Skip to main content

The Genetics of Polycystic Ovary Syndrome

  • Chapter
  • First Online:
Diagnosis and Management of Polycystic Ovary Syndrome

Polycystic ovary syndrome is one of the most common endocrine disorders in women, affecting up to 7% of women of reproductive age. It is characterized by chronic anovulation, hyperandrogenemia, and often obesity [1]. Key reproductive features of PCOS are disordered gonadotropin secretion [2], elevated ovarian and adrenal androgen production [3], and frequently polycystic ovaries. Women with PCOS have profound insulin resistance as well as beta cell dysfunction, regardless of obesity and glucose tolerance status [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ehrmann DA. Polycystic ovary syndrome – Reply. New England Journal of Medicine 2005; 352(26):2757.

    Article  CAS  Google Scholar 

  2. Mansfield R, Galea R, Brincat M, Hole D, Mason H. Metformin has direct effects on human ovarian steroidogenesis. Fertility and Sterility 2003; 79(4):956–962.

    Article  PubMed  Google Scholar 

  3. Rosenfield RL. Ovarian and adrenal function in polycystic ovary syndrome. Endocrinology and Metabolism Clinics of North America 1999; 28(2):265–293.

    Article  PubMed  CAS  Google Scholar 

  4. Dunaif A. Insulin resistance in women with polycystic ovary syndrome. Fertility and Sterility 2006; 86:S13–S14.

    Article  PubMed  CAS  Google Scholar 

  5. Legro RS, Driscoll D, Strauss JF, Fox J, Dunaif A. Evidence for a genetic basis for hyperandrogenemia in polycystic ovary syndrome. Proceedings of the National Academy of Sciences of the United States of America 1998; 95(25):14956–14960.

    Google Scholar 

  6. Cooper HE, Spellacy WN, Prem KA, Cohen WD. Hereditary factors in the Stein-Leventhal syndrome. American Journal of Obstetrics and Gynecology 100, 371–387. 1968. Ref Type: Generic

    PubMed  CAS  Google Scholar 

  7. Ferriman D, Purdie AW. The inheritance of polycystic ovarian disease and a possible relationship to premature balding. Clinical Endocrinology 11, 291–300. 1979. Ref Type: Generic

    Article  PubMed  CAS  Google Scholar 

  8. Vink JM, Sadrzadeh S, Lambalk CB, Boomsma DI. Heritability of polycystic ovary syndrome in a Dutch twin-family study. Journal of Clinical Endocrinology and Metabolism 2006; 91(6):2100–2104.

    Article  PubMed  CAS  Google Scholar 

  9. Urbanek M, Legro RS, Driscoll DA, Azziz R, Ehrmann DA, Norman RJ et al. Thirty-seven candidate genes for polycystic ovary syndrome: strongest evidence for linkage is with follistatin. Proceedings of the National Academy of Sciences of the United States of America 1999; 96(15):8573–8578.

    Google Scholar 

  10. Yildiz BO, Yarali H, Oguz H, Bayraktar M. Glucose intolerance, insulin resistance, and hyperandrogenemia in first degree relatives of women with polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism 2003; 88(5): 2031–2036.

    Article  PubMed  CAS  Google Scholar 

  11. Legro RS, Kunselman AR, Demers L, Wang SC, Bentley-Lewis R, Dunaif A. Elevated dehydroepiandrosterone sulfate levels as the reproductive phenotype in the brothers of women with polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism 2002; 87(5):2134–2138.

    Article  PubMed  CAS  Google Scholar 

  12. Kaushal R, Parchure N, Bano G, Kaski JC, Nussey SS. Insulin resistance and endothelial dysfunction in the brothers of Indian subcontinent Asian women with polycystic ovaries. Clinical Endocrinology 2004; 60(3):322–328.

    Article  PubMed  CAS  Google Scholar 

  13. Sam S, Coviello AD, Sung YA, Legro RS, Dunaif A. Metabolic Phenotype in the Brothers of Women with Polycystic Ovary Syndrome. Diabetes Care 2008; 31(6):1237–41.

    Google Scholar 

  14. Sam S, Legro RS, Bentley-Lewis R, Dunaif A. Dyslipidemia and metabolic syndrome in the sisters of women with polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism 2005; 90(8):4797–4802.

    Article  PubMed  CAS  Google Scholar 

  15. Diamanti-Kandarakis E, Alexandraki K, Bergiele A, Kandarakis H, Mastorakos G, Aessopos A. Presence of metabolic risk factors in non-obese PCOS sisters: Evidence of heritability of insulin resistance. Journal of Endocrinological Investigation 2004; 27(10):931–936.

    PubMed  CAS  Google Scholar 

  16. Franks S, Gharani N, Waterworth D, Batty S, White D, Williamson R et al. The genetic basis of polycystic ovary syndrome. Human Reproduction 1997; 12(12):2641–2648.

    Article  PubMed  CAS  Google Scholar 

  17. Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W et al. Criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: An Androgen Excess Society guideline. Journal of Clinical Endocrinology and Metabolism 2006; 91(11):4237–4245.

    Article  PubMed  CAS  Google Scholar 

  18. Barnes RB, Rosenfield RL, Ehrmann DA, Cara JF, Cuttler L, Levitsky LL et al. Ovarian Hyperandrogynism As A Result of Congenital Adrenal Virilizing Disorders – Evidence for Perinatal Masculinization of Neuroendocrine Function in Women. Journal of Clinical Endocrinology and Metabolism 1994; 79(5):1328–1333.

    Article  PubMed  CAS  Google Scholar 

  19. Abbott DH, Dumesic DA, Eisner JR, Colman RJ, Kemnitz JW. Insights into the development of polycystic ovary syndrome (PCOS) from studies of prenatally androgenized female rhesus monkeys. Trends in Endocrinology and Metabolism 1998; 9(2):62–67.

    Article  PubMed  CAS  Google Scholar 

  20. Ott J. Analysis of human genetic linkage. Third ed. Baltimore: Johns Hopkins University Press, 1999.

    Google Scholar 

  21. Greenberg DA, Abreu PC. Determining trait locus position from multipoint analysis: Accuracy and power of three different statistics. Genetic Epidemiology 2001; 21:299–314.

    Article  PubMed  CAS  Google Scholar 

  22. Risch N. Linkage strategies for genetically complex traits. II. The power of affected relative pairs. American Journal of Human Genetics 1990; 46(2):229–241.

    PubMed  CAS  Google Scholar 

  23. Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genetics 1995; 11:241–247.

    Article  PubMed  CAS  Google Scholar 

  24. Greenberg DA. Linkage analysis of “necessary” loci versus “susceptibility” loci. American Journal of Human Genetics 1993; 52:135–143.

    PubMed  CAS  Google Scholar 

  25. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996; 273:1516–1517.

    Article  PubMed  CAS  Google Scholar 

  26. Woolf B. On estimating the relation between blood group and disease. American Journal of Human Genetics 1955; 19:251–253.

    Article  CAS  Google Scholar 

  27. Hodge SE. What association analysis can and cannot tell us about the genetics of complex disease. American Journal of Human Genetics 1994; 54:318–323.

    CAS  Google Scholar 

  28. Spielman RS, McGinnis RE, Ewens WJ. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus. American Journal of Human Genetics 1993; 52:506–516.

    PubMed  CAS  Google Scholar 

  29. Weber JL. Human DNA polymorphisms based on length variations in simple- sequence tandem repeats. Genome Analysis 1990; 1:159–181.

    CAS  Google Scholar 

  30. Brookes AJ. The essence of SNPs. Gene 1999; 234(2):177–186.

    Article  PubMed  CAS  Google Scholar 

  31. Laan M, Paabo S. Mapping genes by drift-generated linkage disequilibrium. American Journal of Human Genetics 1998; 63(2):654–656.

    Article  PubMed  CAS  Google Scholar 

  32. Froguel P, Zouali H, Vionnet N, Velho G, Vaxillaire M, Pharm D et al. Familial hyperglycemia due to mutations in glucokinase. Definition of a subtype of diabetes mellitus. The New England Journal of Medicine 1993; 328:697–702.

    Article  PubMed  CAS  Google Scholar 

  33. Davies JL, Kawauchi Y, Bennet ST, Copeman JB, Cordell HJ, Pritchard LE et al. A genome-wide search for human type1 diabetes susceptibility genes. Nature 1994; 371:130–136.

    Article  PubMed  CAS  Google Scholar 

  34. Hunter DJ, Kraft P. Drinking from the fire hose–statistical issues in genomewide association studies. The New England Journal of Medicine 2007; 357(5):436–439.

    Article  PubMed  CAS  Google Scholar 

  35. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 2001; 411:599–603.

    Article  PubMed  CAS  Google Scholar 

  36. Ban Y, Greenberg DA, Concepcion E, Skrabanek L, Villanueva R, Tomer Y. Amino acid substitutions in the thyroglobulin gene are associated with susceptibility to human and murine autoimmune thyroid disease. Proceedings of the National Academy of Sciences of the United States of America 2003; 100:15119–15124.

    Google Scholar 

  37. Altshuler D, Brooks LD, Chakravarti A, Collins FS, Daly MJ, Donnelly P. A haplotype map of the human genome. Nature 2005; 437(7063):1299–1320.

    Article  Google Scholar 

  38. Frayling TM. Genome-wide association studies provide new insights into type 2 diabetes aetiology. Nature Reviews. Genetics 2007; 8(9):657–662.

    Article  PubMed  CAS  Google Scholar 

  39. Tucci S, Futterweit W, Concepcion ES, Greenberg DA, Villanueva R, Davies TF et al. Evidence for association of polycystic ovary syndrome in caucasian women with a marker at the insulin receptor gene locus. The Journal of Clinical Endocrinology and Metabolism 2001; 86(1):446–449.

    Article  PubMed  CAS  Google Scholar 

  40. Urbanek M, Woodroffe A, Ewens KG, Diamanti-Kandarakis E, Legro RS, Strauss JF, III et al. Candidate gene region for polycystic ovary syndrome on chromosome 19p13.2. The Journal of Clinical Endocrinology and Metabolism 2005; 90(12):6623–6629.

    Article  PubMed  CAS  Google Scholar 

  41. Urbanek M, Sam S, Legro RS, Dunaif A. Identification of a Polycystic ovary syndrome susceptibility variant in fibrillin-3 and association with a metabolic phenotype. Journal of Clinical Endocrinology and Metabolism 2007; 92(11):4191–4198.

    Article  PubMed  CAS  Google Scholar 

  42. Mukherjee A, Sidis Y, Mahan A, Raher MJ, Xia Y, Rosen ED et al. FSTL3 deletion reveals roles for TGF-beta family ligands in glucose and fat homeostasis in adults. Proceedings of the National Academy of Sciences of the United States of America 2007; 104(4):1348–1353.

    Google Scholar 

  43. Xita N, Tsatsoulis A, Chatzikyriakidou A, Georgiou I. Association of the (TAAAA)n repeat polymorphism in the sex hormone-binding globulin (SHBG) gene with polycystic ovary syndrome and relation to SHBG serum levels. Journal of Clinical Endocrinology and Metabolism 2003; 88(12):5976–5980.

    Article  PubMed  CAS  Google Scholar 

  44. Mifsud A, Ramirez S, Yong EL. Androgen receptor gene CAG trinucleotide repeats in anovulatory infertility and polycystic ovaries. Journal of Clinical Endocrinology and Metabolism 2000; 85(9):3484–3488.

    Article  PubMed  CAS  Google Scholar 

  45. Escobar-Morreale HF, Sanchon R, Millan JLS. A prospective study of the prevalence of nonclassical congenital adrenal hyperplasia among women presenting with hyperandrogenic symptoms and signs. Journal of Clinical Endocrinology & Metabolism 2008; 93(2):527–533.

    Article  CAS  Google Scholar 

  46. Witchel SF, Aston CE. The role of heterozygosity for CYP21 in the polycystic ovary syndrome. Journal of Pediatric Endocrinology & Metabolism 2000; 13:1315–1317.

    Google Scholar 

  47. Witchel SF, Kahsar-Miller M, Aston CE, White C, Azziz R. Prevalence of CYP21 mutations and IRS1 variant among women with polycystic ovary syndrome and adrenal androgen excess. Fertility and Sterility 2005; 83(2):371–375.

    Article  PubMed  CAS  Google Scholar 

  48. Deneux C, Tardy V, Dib A, Mornet E, Billaud L, Charron D et al. Phenotype-genotype correlation in 56 women with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Journal of Clinical Endocrinology and Metabolism 2001; 86(1):207–213.

    Article  PubMed  CAS  Google Scholar 

  49. Legro RS, Muhleman DR, Comings DE, Lobo RA, Kovacs BW. A Dopamine D-3 Receptor Genotype Is Associated with Hyperandrogenic Chronic Anovulation and Resistant to Ovulation Induction with Clomiphene Citrate in Female Hispanics. Fertility and Sterility 1995; 63(4):779–784.

    PubMed  CAS  Google Scholar 

  50. Kahsar-Miller M, Boots LR, Azziz R. Dopamine D-3 receptor polymorphism is not associated with the polycystic ovary syndrome. Fertility and Sterility 1999; 71(3):436–438.

    Article  PubMed  CAS  Google Scholar 

  51. Marshall JC, Eagleson CA. Neuroendocrine aspects of polycystic ovary syndrome. Endocrinology and Metabolism Clinics of North America 1999; 28(2):295–324.

    Article  PubMed  CAS  Google Scholar 

  52. Lechin F, van der Dijs B. Neuroendocrine profiling in PCOS. Fertility and Sterility 2004; 82(3):765–766.

    Article  PubMed  Google Scholar 

  53. Tong Y, Liao WX, Roy AC, Ng SC. Association of Accl polymorphism in the follicle-stimulating hormone beta gene with polycystic ovary syndrome. Fertility and Sterility 2000; 74(6):1233–1236.

    Article  PubMed  CAS  Google Scholar 

  54. Franks S, Mason H, Willis D. Follicular dynamics in the polycystic ovary syndrome. Molecular and Cellular Endocrinology 2000; 163(1–2):49–52.

    Article  PubMed  CAS  Google Scholar 

  55. Liao WX, Roy AC, Ng SC. Preliminary investigation of follistatin gene mutations in women with polycystic ovary syndrome. Molecular Human Reproduction 2000; 6(7):587–590.

    Article  PubMed  CAS  Google Scholar 

  56. Haddad L, Evans JC, Gharani N, Robertson C, Rush K, Wiltshire S et al. Variation within the type 2 diabetes susceptibility gene calpain-10 and polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism 2002; 87(6):2606–2610.

    Article  PubMed  CAS  Google Scholar 

  57. San Millan JL, Corton M, Villuendas G, Sancho J, Peral B, Escobar-Morreale HF. Association of the polycystic ovary syndrome with genomic variants related to insulin resistance, type 2 diabetes mellitus, and obesity. Journal of Clinical Endocrinology and Metabolism 2004; 89(6):2640–2646.

    Article  PubMed  CAS  Google Scholar 

  58. El Mkadem SA, Lautier C, Macari F, Mechaly I, Renard E, Cros G et al. Combined defects in IRS-1 and IRS-2 genes me associated with insulin resistance in polycystic ovary syndrome. Diabetes 1999; 48:A436.

    Article  Google Scholar 

  59. Horikawa Y, Oda N, Cox NJ, et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genetics 2000; 26:163–175.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaron Tomer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Eilerman, B., Salehi, M., Tomer, Y. (2009). The Genetics of Polycystic Ovary Syndrome. In: Farid, N.R., Diamanti-Kandarakis, E. (eds) Diagnosis and Management of Polycystic Ovary Syndrome. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09718-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09718-3_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09717-6

  • Online ISBN: 978-0-387-09718-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics