Skip to main content

Dietary Management of PCOS

  • Chapter
  • First Online:
Diagnosis and Management of Polycystic Ovary Syndrome
  • 1601 Accesses

The majority of women with PCOS, regardless of weight, have a form of insulin resistance that is intrinsic to the syndrome. For this reason, lifestyle changes that improve insulin sensitivity should be the first line of treatment for women with PCOS, particularly for those who are overweight. Lifestyle interventions should also accompany pharmacological treatment [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Norman, R.J., et al., The role of lifestyle modification in polycystic ovary syndrome. Trends Endocrinol Metab, 2002;. 13(6): 251–7.

    PubMed  CAS  Google Scholar 

  2. Norman, R.J., et al., Lifestyle choices, diet, and insulin sensitizers in polycystic ovary syndrome. Endocrine, 2006;. 30(1): 35–43.

    PubMed  CAS  Google Scholar 

  3. Andersen, P., et al., Increased insulin sensitivity and fibrinolytic capacity after dietary intervention in obese women with polycystic ovary syndrome. Metabolism, 1995;. 44(5): 611–6.

    PubMed  CAS  Google Scholar 

  4. Ciaraldi, T.P., et al., Cellular insulin resistance in adipocytes from obese polycystic ovary syndrome subjects involves adenosine modulation of insulin sensitivity. J Clin Endocrinol Metab, 1997;. 82(5): 1421–5.

    PubMed  CAS  Google Scholar 

  5. Gambineri, A., et al., Obesity and the polycystic ovary syndrome. Int J Obes Relat Metab Disord, 2002;. 26(7): 883–96.

    PubMed  CAS  Google Scholar 

  6. Kiddy, D.S., et al., Improvement in endocrine and ovarian function during dietary treatment of obese women with polycystic ovary syndrome. Clin Endocrinol (Oxf), 1992;. 36(1): 105–11.

    CAS  Google Scholar 

  7. Pasquali, R. and F. Casimirri, The impact of obesity on hyperandrogenism and polycystic ovary syndrome in premenopausal women. Clin Endocrinol (Oxf), 1993;. 39(1): 1–16.

    CAS  Google Scholar 

  8. Pasquali, R., et al., Insulin and androgen relationships with abdominal body fat distribution in women with and without hyperandrogenism. Horm Res, 1993. 39(5–6): 179–87.

    PubMed  CAS  Google Scholar 

  9. Pasquali, R., et al., Body fat distribution has weight-independent effects on clinical, hormonal, and metabolic features of women with polycystic ovary syndrome. Metabolism, 1994;. 43(6): 706–13.

    PubMed  CAS  Google Scholar 

  10. Yildirim, B., N. Sabir, and B. Kaleli, Relation of intra-abdominal fat distribution to metabolic disorders in nonobese patients with polycystic ovary syndrome. Fertil Steril, 2003;. 79(6): 1358–64.

    PubMed  Google Scholar 

  11. Douchi, T., et al., Body fat distribution in women with polycystic ovary syndrome. Obstet Gynecol, 1995. 86(4 Pt 1): 516–9.

    PubMed  CAS  Google Scholar 

  12. Kirchengast, S. and J. Huber, Body composition characteristics and body fat distribution in lean women with polycystic ovary syndrome. Hum Reprod, 2001;. 16(6): 1255–60.

    PubMed  CAS  Google Scholar 

  13. Carmina, E., et al., Abdominal fat quantity and distribution in women with polycystic ovary syndrome and extent of its relation to insulin resistance. J Clin Endocrinol Metab, 2007;. 92(7): 2500–5.

    PubMed  CAS  Google Scholar 

  14. Cascella, T., et al., Visceral fat is associated with cardiovascular risk in women with polycystic ovary syndrome. Hum Reprod, 2007.

    Google Scholar 

  15. Jakubowicz, D.J. and J.E. Nestler, 17 alpha-Hydroxyprogesterone responses to leuprolide and serum androgens in obese women with and without polycystic ovary syndrome offer dietary weight loss. J Clin Endocrinol Metab, 1997;. 82(2): 556–60.

    PubMed  CAS  Google Scholar 

  16. Pasquali, R., et al., Effect of long-term treatment with metformin added to hypocaloric diet on body composition, fat distribution, and androgen and insulin levels in abdominally obese women with and without the polycystic ovary syndrome. J Clin Endocrinol Metab, 2000;. 85(8): 2767–74.

    PubMed  CAS  Google Scholar 

  17. Wright, C.E., et al., Dietary intake, physical activity, and obesity in women with polycystic ovary syndrome. Int J Obes Relat Metab Disord, 2004;. 28(8): 1026–32.

    PubMed  CAS  Google Scholar 

  18. Georgopoulos, N.A., et al., Basal metabolic rate is decreased in women with polycystic ovary syndrome and biochemical hyperandrogenemia and is associated with insulin resistance. Fertil Steril, 2008.

    Google Scholar 

  19. Hirschberg, A.L., et al., Impaired cholecystokinin secretion and disturbed appetite regulation in women with polycystic ovary syndrome. Gynecol Endocrinol, 2004;. 19(2): 79–87.

    PubMed  CAS  Google Scholar 

  20. Moran, L.J., et al., Ghrelin and measures of satiety are altered in polycystic ovary syndrome but not differentially affected by diet composition. J Clin Endocrinol Metab, 2004;. 89(7): 3337–44.

    PubMed  CAS  Google Scholar 

  21. Pagotto, U., et al., Plasma ghrelin, obesity, and the polycystic ovary syndrome: correlation with insulin resistance and androgen levels. J Clin Endocrinol Metab, 2002;. 87(12): 5625–9.

    PubMed  CAS  Google Scholar 

  22. Pasquali, R., et al., Clinical and hormonal characteristics of obese amenorrheic hyperandrogenic women before and after weight loss. J Clin Endocrinol Metab, 1989;. 68(1): 173–9.

    PubMed  CAS  Google Scholar 

  23. Kiddy, D.S., et al., Diet-induced changes in sex hormone binding globulin and free testosterone in women with normal or polycystic ovaries: correlation with serum insulin and insulin-like growth factor-I. Clin Endocrinol (Oxf), 1989;. 31(6): 757–63.

    CAS  Google Scholar 

  24. Guzick, D.S., et al., Endocrine consequences of weight loss in obese, hyperandrogenic, anovulatory women. Fertil Steril, 1994;. 61(4): 598–604.

    PubMed  CAS  Google Scholar 

  25. Clark, A.M., et al., Weight loss results in significant improvement in pregnancy and ovulation rates in anovulatory obese women. Hum Reprod, 1995;. 10(10): 2705–12.

    PubMed  CAS  Google Scholar 

  26. Clark, A.M., et al., Weight loss in obese infertile women results in improvement in reproductive outcome for all forms of fertility treatment. Hum Reprod, 1998;. 13(6): 1502–5.

    PubMed  CAS  Google Scholar 

  27. Crave, J.C., et al., Effects of diet and metformin administration on sex hormone-binding globulin, androgens, and insulin in hirsute and obese women. J Clin Endocrinol Metab, 1995;. 80(7): 2057–62.

    PubMed  CAS  Google Scholar 

  28. Crosignani, P.G., et al., Overweight and obese anovulatory patients with polycystic ovaries: parallel improvements in anthropometric indices, ovarian physiology and fertility rate induced by diet. Hum Reprod, 2003;. 18(9): 1928–32.

    PubMed  Google Scholar 

  29. Gambineri, A., et al., Effect of flutamide and metformin administered alone or in combination in dieting obese women with polycystic ovary syndrome. Clin Endocrinol (Oxf), 2004;. 60(2): 241–9.

    CAS  Google Scholar 

  30. Holte, J., et al., Restored insulin sensitivity but persistently increased early insulin secretion after weight loss in obese women with polycystic ovary syndrome. J Clin Endocrinol Metab, 1995;. 80(9): 2586–93.

    PubMed  CAS  Google Scholar 

  31. Huber-Buchholz, M.M., D.G. Carey, and R.J. Norman, Restoration of reproductive potential by lifestyle modification in obese polycystic ovary syndrome: role of insulin sensitivity and luteinizing hormone. J Clin Endocrinol Metab, 1999;. 84(4): 1470–4.

    PubMed  CAS  Google Scholar 

  32. Qublan, H.S., et al., Dietary intervention versus metformin to improve the reproductive outcome in women with polycystic ovary syndrome. A prospective comparative study. Saudi Med J, 2007;. 28(11): 1694–9.

    PubMed  Google Scholar 

  33. Stamets, K., et al., A randomized trial of the effects of two types of short-term hypocaloric diets on weight loss in women with polycystic ovary syndrome. Fertil Steril, 2004;. 81(3): 630–7.

    PubMed  CAS  Google Scholar 

  34. Tang, T., et al., Combined lifestyle modification and metformin in obese patients with polycystic ovary syndrome. A randomized, placebo-controlled, double-blind multicentre study. Hum Reprod, 2006;. 21(1): 80–9.

    PubMed  Google Scholar 

  35. Van Dam, E.W., et al., Increase in daily LH secretion in response to short-term calorie restriction in obese women with PCOS. Am J Physiol Endocrinol Metab, 2002. 282(4): E865–72.

    PubMed  Google Scholar 

  36. Wahrenberg, H., et al., Divergent effects of weight reduction and oral anticonception treatment on adrenergic lipolysis regulation in obese women with the polycystic ovary syndrome. J Clin Endocrinol Metab, 1999;. 84(6): 2182–7.

    PubMed  CAS  Google Scholar 

  37. Moran, L.J., et al., Dietary composition in restoring reproductive and metabolic physiology in overweight women with polycystic ovary syndrome. J Clin Endocrinol Metab, 2003;. 88(2): 812–9.

    PubMed  CAS  Google Scholar 

  38. Moran, L.J., et al., C-reactive protein before and after weight loss in overweight women with and without polycystic ovary syndrome. J Clin Endocrinol Metab, 2007;. 92(8): 2944–51.

    PubMed  CAS  Google Scholar 

  39. Moran, L.J., et al., Short-term meal replacements followed by dietary macronutrient restriction enhance weight loss in polycystic ovary syndrome. Am J Clin Nutr, 2006;. 84(1): 77–87.

    PubMed  CAS  Google Scholar 

  40. Hoeger, K.M., et al., A randomized, 48-week, placebo-controlled trial of intensive lifestyle modification and/or metformin therapy in overweight women with polycystic ovary syndrome: a pilot study. Fertil Steril, 2004;. 82(2): 421–9.

    PubMed  CAS  Google Scholar 

  41. Lord, J.M., I.H. Flight, and R.J. Norman, Metformin in polycystic ovary syndrome: systematic review and meta-analysis. BMJ, 2003;. 327(7421): 951–3.

    PubMed  CAS  Google Scholar 

  42. Diabetes Prevention Program Research Group, Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med, 2002. 346: 393–403.

    Google Scholar 

  43. Chang, R.J., et al., Insulin resistance in nonobese patients with polycystic ovarian disease. J Clin Endocrinol Metab, 1983;. 57(2): 356–9.

    PubMed  CAS  Google Scholar 

  44. Dunaif, A., et al., Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes, 1989;. 38(9): 1165–74.

    PubMed  CAS  Google Scholar 

  45. Jialal, I., et al., Evidence for insulin resistance in nonobese patients with polycystic ovarian disease. J Clin Endocrinol Metab, 1987;. 64(5): 1066–9.

    PubMed  CAS  Google Scholar 

  46. Douglas, C.C., et al., Role of diet in the treatment of polycystic ovary syndrome. Fertil Steril, 2006;. 85(3): 679–88.

    PubMed  CAS  Google Scholar 

  47. Kasim-Karakas, S.E., et al., Metabolic and endocrine effects of a polyunsaturated fatty acid-rich diet in polycystic ovary syndrome. J Clin Endocrinol Metab, 2004;. 89(2): 615–20.

    PubMed  CAS  Google Scholar 

  48. Jenkins, D.J., et al., Glycemic index: overview of implications in health and disease. Am J Clin Nutr, 2002;. 76(1): 266S–73S.

    PubMed  CAS  Google Scholar 

  49. Luscombe, N., M. Noakes, and P. Clifton, Diets high and low in glycemic index versus high monounsaturated fat diets: effects on glucose and lipid metabolism in NIDDM. Eur J Clin Nutr, 1999;. 53(6): 473–8.

    PubMed  CAS  Google Scholar 

  50. Rizkalla, S.W., et al., Improved plasma glucose control, whole-body glucose utilization, and lipid profile on a low-glycemic index diet in type 2 diabetic men: a randomized controlled trial. Diabetes Care, 2004;. 27(8): 1866–72.

    PubMed  Google Scholar 

  51. Frost, G., et al., Glycaemic index as a determinant of serum HDL-cholesterol concentration. Lancet, 1999;. 353(9158): 1045–8.

    PubMed  CAS  Google Scholar 

  52. Jenkins, D., et al., Low glycemic index carbohydrate foods in the management of hyperlipidemia. Am J Clin Nutr, 1985;. 42(4): 604–17.

    PubMed  CAS  Google Scholar 

  53. Jenkins, D.J., et al., Low-glycemic index diet in hyperlipidemia: use of traditional starchy foods. American Journal of Clinical Nutrition, 1987;. 46(1): 66–71.

    PubMed  CAS  Google Scholar 

  54. Jrvi, A.E., et al., Improved glycemic control and lipid profile and normalized fibrinolytic activity on a low-glycemic index diet in type 2 diabetic patients. Diabetes Care, 1999;. 22(1): 10–8.

    Google Scholar 

  55. Wolever, T., et al., Beneficial effect of a low glycaemic index diet in type 2 diabetes. Diabet Med, 1992. 9: 451–8.

    PubMed  CAS  Google Scholar 

  56. Wolever, T., et al., Beneficial effect of low-glycemic index diet in overweight NIDDM subjects. Diabetes Care, 1992;. 15(4): 562–4.

    PubMed  CAS  Google Scholar 

  57. Ebbeling, C.B., et al., Effects of an ad libitum low-glycemic load diet on cardiovascular disease risk factors in obese young adults. Am J Clin Nutr, 2005;. 81(5): 976–82.

    PubMed  CAS  Google Scholar 

  58. Fontvieille, A., et al., The use of low glycaemic index foods improves metabolic control of diabetic patients over five weeks. Diabet Med, 1992;. 9(5): 444–50.

    PubMed  CAS  Google Scholar 

  59. Brynes, A., et al., A randomised four-intervention crossover study investigating the effect of carbohydrates on daytime profiles of insulin, glucose, non-esterified fatty acids and triacylglycerols in middle-aged men. Br J Nutr, 2003. 89: 207–18.

    PubMed  CAS  Google Scholar 

  60. Slabber, M., et al., Effects of a low-insulin-response, energy-restricted diet on weight loss and plasma insulin concentrations in hyperinsulinemic obese females. Am J Clin Nutr, 1994;. 60(1): 48–53.

    PubMed  CAS  Google Scholar 

  61. Krishnan, S., et al., Glycemic index, glycemic load, and cereal fiber intake and risk of type 2 diabetes in US black women. Arch Intern Med, 2007;. 167(21): 2304–9.

    PubMed  Google Scholar 

  62. Liu, S., et al., A prospective study of dietary glycemic load, carbohydrate intake, and risk of coronary heart disease in US women. Am J Clin Nutr, 2000;. 71(6): 1455–61.

    PubMed  CAS  Google Scholar 

  63. Salmeron, J., et al., Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care, 1997;. 20(4): 545–50.

    PubMed  CAS  Google Scholar 

  64. Salmeron, J., et al., Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. JAMA, 1997;. 277(6): 472–7.

    PubMed  CAS  Google Scholar 

  65. Villegas, R., et al., Prospective study of dietary carbohydrates, glycemic index, glycemic load, and incidence of type 2 diabetes mellitus in middle-aged Chinese women. Arch Intern Med, 2007;. 167(21): 2310–6.

    PubMed  Google Scholar 

  66. McKeown, N., et al., Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the Framingham offspring cohort. Diabetes Care, 2004. 27: 538–46.

    PubMed  Google Scholar 

  67. Murakami, K., et al., Dietary glycemic index and load in relation to metabolic risk factors in Japanese female farmers with traditional dietary habits. Am J Clin Nutr, 2006;. 83(5): 1161–9.

    PubMed  CAS  Google Scholar 

  68. Augustin, L.S., et al., Glycemic index and glycemic load in endometrial cancer. Int J Cancer, 2003;. 105(3): 404–7.

    PubMed  CAS  Google Scholar 

  69. Augustin, L.S., et al., Dietary glycemic index and glycemic load, and breast cancer risk: a case-control study. Ann Oncol, 2001;. 12(11): 1533–8.

    PubMed  CAS  Google Scholar 

  70. Franceschi, S., et al., Dietary glycemic load and colorectal cancer risk. Ann Oncol, 2001;. 12(2): 173–8.

    PubMed  CAS  Google Scholar 

  71. Slattery, M., et al., Dietary sugar and colon cancer. Cancer Epidemiol Biomarkers Prev, 1997;. 6(9): 677–85.

    PubMed  CAS  Google Scholar 

  72. Augustin, L.S., et al., Dietary glycemic index, glycemic load and ovarian cancer risk: a case-control study in Italy. Ann Oncol, 2003;. 14(1): 78–84.

    PubMed  CAS  Google Scholar 

  73. Ludwig, D., Dietary glycemic index and obesity. J Nutr, 2000. 130(2S Suppl): 280S–283S.

    Google Scholar 

  74. Agus, M., et al., Dietary composition and physiologic adaptations to energy restriction. Am J Clin Nutr, 2000;. 71(4): 901–7.

    PubMed  CAS  Google Scholar 

  75. Pereira, M., et al., Effects of a low – glycemic load diet on resting energy expenditure and heart disease risk factors during weight loss. JAMA, 2004. 292: 2482–2490.

    PubMed  CAS  Google Scholar 

  76. Febbraio, M., et al., Preexercise carbohydrate ingestion, glucose kinetics, and muscle glycogen use: effect of the glycemic index. J Appl Physiol, 2000;. 89(5): 1845–51.

    PubMed  CAS  Google Scholar 

  77. Stevenson, E., C. Williams, and M. Nute, The influence of the glycaemic index of breakfast and lunch on substrate utilisation during the postprandial periods and subsequent exercise. Br J Nutr, 2005. 93: 885–893.

    PubMed  CAS  Google Scholar 

  78. Wee, S.L., et al., Ingestion of a high-glycemic index meal increases muscle glycogen storage at rest but augments its utilization during subsequent exercise. J Appl Physiol, 2005;. 99(2): 707–14.

    PubMed  CAS  Google Scholar 

  79. Wu, C.L., et al., The influence of high-carbohydrate meals with different glycaemic indices on substrate utilisation during subsequent exercise. Br J Nutr, 2003;. 90(6): 1049–56.

    PubMed  CAS  Google Scholar 

  80. Bahadori, B., et al., Low-fat, high-carbohydrate (low-glycaemic index) diet induces weight loss and preserves lean body mass in obese healthy subjects: results of a 24-week study. Diabetes, Obesity and Metabolism, 2005. 7: 290–293.

    PubMed  CAS  Google Scholar 

  81. Bouché, C., et al., Five-week, low–glycemic index diet decreases total fat mass and improves plasma lipid profile in moderately overweight nondiabetic men. Diab Care, 2003. 2: 822–28.

    Google Scholar 

  82. McMillan-Price, J., et al., Comparison of 4 diets of varying glycemic load on weight loss and cardiovascular risk reduction in overweight and obese young adults: a randomised controlled trial. Archives Internal Medicine, 2006. 166: 1466–75.

    Google Scholar 

  83. Dumesnil, J.G., et al., Effect of a low-glycaemic index--low-fat--high protein diet on the atherogenic metabolic risk profile of abdominally obese men. Br J Nutr, 2001. 86(5): p. 557–68.

    PubMed  CAS  Google Scholar 

  84. Hare-Bruun, H., A. Flint, and B.L. Heitmann, Glycemic index and glycemic load in relation to changes in body weight, body fat distribution, and body composition in adult Danes. Am J Clin Nutr, 2006;. 84(4): 871–9; quiz 952–3.

    PubMed  CAS  Google Scholar 

  85. Ma, Y., et al., Association between dietary carbohydrates and body weight. Am J Epidemiol, 2005. 161: 359–367.

    PubMed  Google Scholar 

  86. Buyken, A., et al., Glycemic index in the diet of European outpatients with type 1 diabetes: relations to glycated hemoglobin and serum lipids. Am J Clin Nutr, 2001;. 73(3): 574–81.

    PubMed  CAS  Google Scholar 

  87. Thomas, D.E., E.J. Elliott, and L. Baur, Low glycaemic index or low glycaemic load diets for overweight and obesity. Cochrane Database Syst Rev, 2007(3): CD005105.

    Google Scholar 

  88. Boeing, H., et al., Association between glycated hemoglobin and diet and other lifestyle factors in a nondiabetic population: cross-sectional evaluation of data from the Potsdam cohort of the European Prospective Investigation into Cancer and Nutrition Study. Am J Clin Nutr, 2000;. 71(5): 1115–22.

    PubMed  CAS  Google Scholar 

  89. Liu, S., et al., A prospective study of whole-grain intake and risk of type 2 diabetes mellitus in US women. Am J Public Health, 2000;. 90(9): 1409–15.

    PubMed  CAS  Google Scholar 

  90. Marshall, J.A., D.H. Bessesen, and R.F. Hamman, High saturated fat and low starch and fibre are associated with hyperinsulinaemia in a non-diabetic population: the San Luis Valley Diabetes Study. Diabetologia, 1997;. 40(4): 430–8.

    PubMed  CAS  Google Scholar 

  91. Meyer, K., et al., Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am J Clin Nutr, 2000. 71: 921–930.

    PubMed  CAS  Google Scholar 

  92. Montonen, J., et al., Whole-grain and fiber intake and the incidence of type 2 diabetes. Am J Clin Nutr, 2003;. 77(3): 622–9.

    PubMed  CAS  Google Scholar 

  93. Pereira, M., et al., Effect of whole grains on insulin sensitivity in overweight hyperinsulinemic adults. Am J Clin Nutr, 2002. 75: 848–855.

    PubMed  CAS  Google Scholar 

  94. Liese, A.D., et al., Whole-grain intake and insulin sensitivity: the Insulin Resistance Atherosclerosis Study. Am J Clin Nutr, 2003;. 78(5): 965–71.

    PubMed  CAS  Google Scholar 

  95. Liu, S., et al., Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women. Am J Clin Nutr, 2003. 78: 920–927.

    PubMed  CAS  Google Scholar 

  96. Marshall, J.A., R.F. Hamman, and J. Baxter, High-fat, low-carbohydrate diet and the etiology of non-insulin-dependent diabetes mellitus: the San Luis Valley Diabetes Study. Am J Epidemiol, 1991;. 134(6): 590–603.

    PubMed  CAS  Google Scholar 

  97. Marshall, J.A., et al., Dietary fat predicts conversion from impaired glucose tolerance to NIDDM. The San Luis Valley Diabetes Study. Diabetes Care, 1994;. 17(1): 50–6.

    PubMed  CAS  Google Scholar 

  98. Schulze, M.B., et al., Carbohydrate intake and incidence of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Br J Nutr, 2007: 1–10.

    Google Scholar 

  99. Swinburn, B.A., P.A. Metcalf, and S.J. Ley, Long-term (5-year) effects of a reduced-fat diet intervention in individuals with glucose intolerance. Diabetes Care, 2001;. 24(4): 619–24.

    PubMed  CAS  Google Scholar 

  100. Saldana, T.M., A.M. Siega-Riz, and L.S. Adair, Effect of macronutrient intake on the development of glucose intolerance during pregnancy. Am J Clin Nutr, 2004;. 79(3): 479–86.

    PubMed  CAS  Google Scholar 

  101. Appel, L.J., et al., A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med, 1997;. 336(16): 1117–24.

    PubMed  CAS  Google Scholar 

  102. Ard, J.D., et al., The effect of the PREMIER interventions on insulin sensitivity. Diabetes Care, 2004;. 27(2): 340–7.

    PubMed  Google Scholar 

  103. Yang, E.J., et al., Carbohydrate intake and biomarkers of glycemic control among US adults: the third National Health and Nutrition Examination Survey (NHANES III). Am J Clin Nutr, 2003;. 77(6): 1426–33.

    PubMed  CAS  Google Scholar 

  104. Xu, J., et al., Macronutrient intake and glycemic control in a population-based sample of American Indians with diabetes: the Strong Heart Study. Am J Clin Nutr, 2007;. 86(2): 480–7.

    PubMed  CAS  Google Scholar 

  105. Feskens, E.J. and D. Kromhout, Habitual dietary intake and glucose tolerance in euglycaemic men: the Zutphen Study. Int J Epidemiol, 1990;. 19(4): 953–9.

    PubMed  CAS  Google Scholar 

  106. Lovejoy, J. and M. DiGirolamo, Habitual dietary intake and insulin sensitivity in lean and obese adults. Am J Clin Nutr, 1992;. 55(6): 1174–9.

    PubMed  CAS  Google Scholar 

  107. Mayer, E.J., et al., Usual dietary fat intake and insulin concentrations in healthy women twins. Diabetes Care, 1993;. 16(11): 1459–69.

    PubMed  CAS  Google Scholar 

  108. Mayer-Davis, E.J., et al., Dietary fat and insulin sensitivity in a triethnic population: the role of obesity. The Insulin Resistance Atherosclerosis Study (IRAS). Am J Clin Nutr, 1997;. 65(1): 79–87.

    PubMed  CAS  Google Scholar 

  109. Parker, D.R., et al., Relationship of dietary saturated fatty acids and body habitus to serum insulin concentrations: the Normative Aging Study. Am J Clin Nutr, 1993;. 58(2): 129–36.

    PubMed  CAS  Google Scholar 

  110. Colditz, G., et al., Diet and risk of clinical diabetes in women. Am J Clin Nutr, 1992. 55: 1018–1023.

    PubMed  CAS  Google Scholar 

  111. Tsunehara, C.H., D.L. Leonetti, and W.Y. Fujimoto, Diet of second-generation Japanese-American men with and without non-insulin-dependent diabetes. Am J Clin Nutr, 1990;. 52(4): 731–8.

    PubMed  CAS  Google Scholar 

  112. Ohrvall, M., et al., The serum cholesterol ester fatty acid composition but not the serum concentration of alpha tocopherol predicts the development of myocardial infarction in 50-year-old men: 19 years follow-up. Atherosclerosis, 1996;. 127(1): 65–71.

    PubMed  CAS  Google Scholar 

  113. Salomaa, V., et al., Fatty acid composition of serum cholesterol esters in different degrees of glucose intolerance: a population-based study. Metabolism, 1990;. 39(12): 1285–91.

    PubMed  CAS  Google Scholar 

  114. Vessby, B., et al., The risk to develop NIDDM is related to the fatty acid composition of the serum cholesterol esters. Diabetes, 1994;. 43(11): 1353–7.

    PubMed  CAS  Google Scholar 

  115. Vessby, B., S. Tengblad, and H. Lithell, Insulin sensitivity is related to the fatty acid composition of serum lipids and skeletal muscle phospholipids in 70-year-old men. Diabetologia, 1994;. 37(10): 1044–50.

    PubMed  CAS  Google Scholar 

  116. Wang, L., et al., Plasma fatty acid composition and incidence of diabetes in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Clin Nutr, 2003;. 78(1): 91–8.

    PubMed  CAS  Google Scholar 

  117. Stender, S. and J. Dyerberg, Influence of trans fatty acids on health. Ann Nutr Metab, 2004;. 48(2): 61–6.

    PubMed  CAS  Google Scholar 

  118. Grundy, S.M., N. Abate, and M. Chandalia, Diet composition and the metabolic syndrome: what is the optimal fat intake? Am J Med, 2002. 113(Suppl 9B): 25S–29S.

    PubMed  CAS  Google Scholar 

  119. Tricon, S., et al., Opposing effects of cis-9,trans-11 and trans-10,cis-12 conjugated linoleic acid on blood lipids in healthy humans. Am J Clin Nutr, 2004;. 80(3): 614–20.

    PubMed  CAS  Google Scholar 

  120. Mozaffarian, D., Trans fatty acids – effects on systemic inflammation and endothelial function. Atheroscler Suppl, 2006;. 7(2): 29–32.

    PubMed  CAS  Google Scholar 

  121. Lopez-Garcia, E., et al., Consumption of trans fatty acids is related to plasma biomarkers of inflammation and endothelial dysfunction. J Nutr, 2005;. 135(3): 562–6.

    PubMed  CAS  Google Scholar 

  122. Chavarro, J.E., et al., Dietary fatty acid intakes and the risk of ovulatory infertility. Am J Clin Nutr, 2007;. 85(1): 231–7.

    PubMed  CAS  Google Scholar 

  123. Zivkovic, A.M., J.B. German, and A.J. Sanyal, Comparative review of diets for the metabolic syndrome: implications for nonalcoholic fatty liver disease. Am J Clin Nutr, 2007;. 86(2): 285–300.

    PubMed  CAS  Google Scholar 

  124. Krebs, M., et al., Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes, 2002;. 51(3): 599–605.

    PubMed  CAS  Google Scholar 

  125. Larivire, F., et al., Effects of dietary protein restriction on glucose and insulin metabolism in normal and diabetic humans. Metabolism, 1994;. 43(4): 462–7.

    Google Scholar 

  126. Linn, T., et al., Effect of dietary protein intake on insulin secretion and glucose metabolism in insulin-dependent diabetes mellitus. J Clin Endocrinol Metab, 1996;. 81(11): 3938–43.

    PubMed  CAS  Google Scholar 

  127. Linn, T., et al., Effect of long-term dietary protein intake on glucose metabolism in humans. Diabetologia, 2000;. 43(10): 1257–65.

    PubMed  CAS  Google Scholar 

  128. Rossetti, L., et al., Effect of dietary protein on in vivo insulin action and liver glycogen repletion. Am J Physiol, 1989. 257(2 Pt 1): E212–9.

    PubMed  CAS  Google Scholar 

  129. Farnsworth, E., et al., Effect of a high-protein, energy-restricted diet on body composition, glycemic control, and lipid concentrations in overweight and obese hyperinsulinemic men and women. Am J Clin Nutr, 2003;. 78(1): 31–9.

    PubMed  CAS  Google Scholar 

  130. Foster, G.D., et al., A randomized trial of a low-carbohydrate diet for obesity. N Engl J Med, 2003;. 348(21): 2082–90.

    PubMed  CAS  Google Scholar 

  131. Parker, B., et al., Effect of a high-protein, high-monounsaturated fat weight loss diet on glycemic control and lipid levels in type 2 diabetes. Diabetes Care, 2002;. 25(3): 425–30.

    PubMed  Google Scholar 

  132. Stern, L., et al., The effects of low-carbohydrate versus conventional weight loss diets in severely obese adults: one-year follow-up of a randomised trial. Ann Intern Med, 2004. 140: 778–785.

    PubMed  Google Scholar 

  133. Tay, J., et al., Metabolic effects of weight loss on a very-low-carbohydrate diet compared with an isocaloric high-carbohydrate diet in abdominally obese subjects. J Am Coll Cardiol, 2008;. 51(1): 59–67.

    PubMed  CAS  Google Scholar 

  134. Jiang, R., et al., Dietary iron intake and blood donations in relation to risk of type 2 diabetes in men: a prospective cohort study. Am J Clin Nutr, 2004;. 79(1): 70–5.

    PubMed  CAS  Google Scholar 

  135. Lee, D.H., A.R. Folsom, and D.R. Jacobs, Dietary iron intake and Type 2 diabetes incidence in postmenopausal women: the Iowa Women s Health Study. Diabetologia, 2004;. 47(2): 185–94.

    PubMed  Google Scholar 

  136. Luan, D.C., et al., Body Iron Stores and Dietary Iron Intake in Relation to Diabetes in Adults in North China. Diabetes Care, 2007; 31(2): 285–6.

    Google Scholar 

  137. Song, Y., et al., A prospective study of red meat consumption and type 2 diabetes in middle-aged and elderly women: the women s health study. Diabetes Care, 2004;. 27(9): 2108–15.

    PubMed  CAS  Google Scholar 

  138. Schulze, M.B., et al., Processed meat intake and incidence of Type 2 diabetes in younger and middle-aged women. Diabetologia, 2003;. 46(11): 1465–73.

    PubMed  CAS  Google Scholar 

  139. Jiang, R., et al., Body iron stores in relation to risk of type 2 diabetes in apparently healthy women. JAMA, 2004;. 291(6): 711–7.

    PubMed  CAS  Google Scholar 

  140. Panagiotakos, D.B., et al., The relationship between dietary habits, blood glucose and insulin levels among people without cardiovascular disease and type 2 diabetes; the ATTICA study. Rev Diabet Stud, 2005;. 2(4): 208–15.

    PubMed  Google Scholar 

  141. WCRF/AICR, Food, Nutrition, Physical Activity and the Prevention of Cancer: a Global Perspective. 2007, World Cancer Research Fund and American Institute for Cancer Research Washington DC, USA.

    Google Scholar 

  142. Goodman, M.T., et al., Association of soy and fiber consumption with the risk of endometrial cancer. Am J Epidemiol, 1997;. 146(4): 294–306.

    PubMed  CAS  Google Scholar 

  143. Littman, A.J., S.A. Beresford, and E. White, The association of dietary fat and plant foods with endometrial cancer (United States). Cancer Causes Control, 2001;. 12(8): 691–702.

    PubMed  CAS  Google Scholar 

  144. McCann, S.E., et al., Diet in the epidemiology of endometrial cancer in western New York (United States). Cancer Causes Control, 2000;. 11(10): 965–74.

    PubMed  CAS  Google Scholar 

  145. Petridou, E., et al., Diet in relation to endometrial cancer risk: a case-control study in Greece. Nutr Cancer, 2002;. 44(1): 16–22.

    PubMed  Google Scholar 

  146. Zheng, W., et al., Dietary intake of energy and animal foods and endometrial cancer incidence. The Iowa women s health study. Am J Epidemiol, 1995;. 142(4): 388–94.

    PubMed  CAS  Google Scholar 

  147. Ledikwe, J.H., et al., Reductions in dietary energy density are associated with weight loss in overweight and obese participants in the PREMIER trial. Am J Clin Nutr, 2007;. 85(5): 1212–21.

    PubMed  CAS  Google Scholar 

  148. Ledikwe, J.H., et al., Dietary energy density is associated with energy intake and weight status in US adults. Am J Clin Nutr, 2006;. 83(6): 1362–68.

    PubMed  CAS  Google Scholar 

  149. Rolls, B.J., L.S. Roe, and J.S. Meengs, Reductions in portion size and energy density of foods are additive and lead to sustained decreases in energy intake. Am J Clin Nutr, 2006;. 83(1): 11–17.

    PubMed  CAS  Google Scholar 

  150. Bell, E.A. and B.J. Rolls, Energy density of foods affects energy intake across multiple levels of fat content in lean and obese women. Am J Clin Nutr, 2001;. 73(6): 1010–1018.

    PubMed  CAS  Google Scholar 

  151. Ello-Martin, J.A., J.H. Ledikwe, and B.J. Rolls, The influence of food portion size and energy density on energy intake: implications for weight management. Am J Clin Nutr, 2005;. 82(1): 236S–41S.

    PubMed  CAS  Google Scholar 

  152. Kral, T.V.E., L.S. Roe, and B.J. Rolls, Combined effects of energy density and portion size on energy intake in women. Am J Clin Nutr, 2004;. 79(6): 962–968.

    PubMed  CAS  Google Scholar 

  153. Ello-Martin, J.A., et al., Dietary energy density in the treatment of obesity: a year-long trial comparing 2 weight-loss diets. Am J Clin Nutr, 2007;. 85(6): 1465–1477.

    PubMed  CAS  Google Scholar 

  154. Baxter, A.J., T. Coyne, and C. McClintock, Dietary patterns and metabolic syndrome--a review of epidemiologic evidence. Asia Pac J Clin Nutr, 2006;. 15(2): 134–42.

    PubMed  Google Scholar 

  155. Hodge, A.M., et al., Dietary patterns and diabetes incidence in the Melbourne Collaborative Cohort Study. Am J Epidemiol, 2007;. 165(6): 603–10.

    PubMed  Google Scholar 

  156. Harriss, L.R., et al., Dietary patterns and cardiovascular mortality in the Melbourne Collaborative Cohort Study. Am J Clin Nutr, 2007;. 86(1): 221–9.

    PubMed  CAS  Google Scholar 

  157. Norris, S.L., et al., Long-term non-pharmacological weight loss interventions for adults with prediabetes. Cochrane Database Syst Rev, 2005(2): CD005270.

    Google Scholar 

  158. Berrino, F., et al., Reducing bioavailable sex hormones through a comprehensive change in diet: the diet and androgens (DIANA) randomized trial. Cancer Epidemiol Biomarkers Prev, 2001;. 10(1): 25–33.

    PubMed  CAS  Google Scholar 

  159. Chavarro, J.E., et al., Diet and lifestyle in the prevention of ovulatory disorder infertility. Obstet Gynecol, 2007;. 110(5): 1050–8.

    PubMed  Google Scholar 

  160. Giugliano, D. and K. Esposito, Mediterranean diet and metabolic diseases. Curr Opin Lipidol, 2008;. 19(1): 63–8.

    PubMed  CAS  Google Scholar 

  161. Bull, M., et al., Inflammation, obesity and comorbidities: the role of diet. Public Health Nutr, 2007. 10(10A): 1164–72.

    Google Scholar 

  162. Esmaillzadeh, A., et al., Dietary patterns, insulin resistance, and prevalence of the metabolic syndrome in women. Am J Clin Nutr, 2007;. 85(3): 910–8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate Marsh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Marsh, K. (2009). Dietary Management of PCOS. In: Farid, N.R., Diamanti-Kandarakis, E. (eds) Diagnosis and Management of Polycystic Ovary Syndrome. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09718-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09718-3_16

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09717-6

  • Online ISBN: 978-0-387-09718-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics