Skip to main content

Parallel Numerical Algorithm for the Traveling Wave Model

  • Chapter
Parallel Scientific Computing and Optimization

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 27))

Abstract

A parallel algorithm for the simulation of the dynamics of high-power semiconductor lasers is presented. The model equations describing the multisection broad-area semiconductors lasers are solved by the finite difference scheme, which is constructed on staggered grids. This nonlinear scheme is linearized applying the predictor–corrector method. The algorithm is implemented by using the ParSol tool of parallel linear algebra objects. For parallelization, we adopt the domain partitioning method; the domain is split along the longitudinal axis. Results of computational experiments are presented. The obtained speed-up and efficiency of the parallel algorithm agree well with the theoretical scalability analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balay, S., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., Curfman McInnes, L., Smith, B.F., Zhang, H.: PETSc Users Manual. ANL-95/11 – Revision 2.3.0. Argonne National Laboratory (2005)

    Google Scholar 

  2. Balsamo, S., Sartori, F., Montrosset, I.: Dynamic beam propagation method for flared semiconductor power amplifiers. IEEE Journal of Selected Topics in Quantum Electronics 2, 378–384 (1996)

    Article  Google Scholar 

  3. Bandelow, U., Radziunas, M, Sieber, J., Wolfrum, M.: Impact of gain dispersion on the spatio-temporal dynamics of multisection lasers. IEEE J. Quantum Electron. 37, 183–188 (2001)

    Article  Google Scholar 

  4. Blatt, M., Bastian, P.: The iterative solver template library. In: B. Kågström, E. Elmroth, J. Dongarra, J. Wasniewski (eds.) Applied Parallel Computing: State of the Art in Scientific Computing, Lecture Notes in Scientific Computing, vol. 4699, pp. 666–675. Springer, Berlin Heidelberg New York (2007)

    Google Scholar 

  5. Chazan, P., Mayor, J.M., Morgott, S., Mikulla, M., Kiefer, R., Müller, S., Walther, M., Braunstein, J., Weimann, G.: High-power near difraction-limited tapered amplifiers at 1064 nm for optical intersatelite communications. IEEE Phot. Techn. Lett. 10(11), 1542–1544 (1998)

    Article  Google Scholar 

  6. Čiegis, Raim, Čiegis, Rem., Jakušev, A., Šalteniene, G.: Parallel variational iterative algorithms for solution of linear systems. Mathematical Modelling and Analysis 12(1) 1–16 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Čiegis, R., Jakušev, A., Krylovas, A., SuboČ, O.: Parallel algorithms for solution of nonlinear diffusion problems in image smoothing. Mathematical Modelling and Analysis 10(2), 155–172 (2005)

    MATH  MathSciNet  Google Scholar 

  8. Čiegis, R., Jakušev, A., StarikoviČius, V.: Parallel tool for solution of multiphase flow problems. In: R. Wyrzykowski, J. Dongarra, N. Meyer, J. Wasniewski (eds.) Sixth International conference on Parallel Processing and Applied Mathematics. Poznan, Poland, September 10-14, 2005, Lecture Notes in Computer Science, vol. 3911, pp. 312–319. Springer, Berlin Heidelberg New York (2006)

    Google Scholar 

  9. Egan, A., Ning, C.Z., Moloney, J.V., Indik, R. A., et al.: Dynamic instabilities in Master Oscillator Power Amplifier semiconductor lasers. IEEE J. Quantum Electron. 34, 166–170 (1998)

    Article  Google Scholar 

  10. Gehrig, E., Hess, O., Walenstein, R.: Modeling of the performance of high power diode amplifier systems with an optothermal microscopic spatio-temporal theory. IEEE J. Quantum Electron. 35, 320–331 (2004)

    Article  Google Scholar 

  11. Jakušev, A.: Development, analysis and applications of the technology for parallelization of numerical algorithms for solution of PDE and systems of PDEs. Doctoral dissertation. Vilnius Gediminas Technical University, Technika, 1348, Vilnius (2008)

    Google Scholar 

  12. Kumar, V., Grama, A., Gupta, A., Karypis, G.: Introduction to Parallel Computing: Design and Analysis of Algorithms. Benjamin/Cummings, Redwood City, CA (1994)

    MATH  Google Scholar 

  13. Lang, R.J., Dzurko, K.M., Hardy, A., Demars, S., Schoenfelder, A., Welch, D.F.: Theory of grating-confined broad-area lasers. IEEE J. Quantum Electron. 34, 2196–2210 (1998)

    Article  Google Scholar 

  14. Langtangen, H.P.: Computational Partial Differential Equations. Numerical Methods and Diffpack Programming. Springer, Berlin (2002)

    Google Scholar 

  15. Lichtner, M., Radziunas, M., Recke, L.: Well posedness, smooth dependence and center manifold reduction for a semilinear hyperbolic system from laser dynamics. Math. Meth. Appl. Sci. 30, 931–960 (2007)

    Google Scholar 

  16. Lim, J.J., Benson, T.M., Larkins, E.C.: Design of wide-emitter single-mode laser diodes. IEEE J. Quantum Electron. 41, 506–516 (2005)

    Article  Google Scholar 

  17. Maiwald, M., Schwertfeger, S., Güther, R., Sumpf, B., Paschke, K., Dzionk, C., Erbert, G., Tränkle, G.: 600 mW optical output power at 488 nm by use of a high-power hybrid laser diode system and a periodically poled MgO:LiNbO3. Optics Letters 31(6), 802–804 (2006)

    Article  Google Scholar 

  18. Marciante, J.R., Agrawal, G.P.: Nonlinear mechanisms of filamentation in braod-area semiconductor lasers. IEEE J. Quantum Electron. 32, 590–596 (1996)

    Article  Google Scholar 

  19. Ning, C.Z., Indik, R.A., Moloney, J.V.: Effective Bloch equations for semiconductor lasers and amplifiers. IEEE J. Quantum Electron. 33, 1543–1550 (1997)

    Article  Google Scholar 

  20. Pessa, M., Näppi, J., Savolainen, P., Toivonen, M., Murison, R., Ovchinnikov, A., Asonen, H.: State-of-the-art aluminum-free 980-nm laser diodes. J. Lightwave Technol. 14(10), 2356–2361 (1996)

    Article  Google Scholar 

  21. Radziunas, M., Wünsche, H.-J.: Multisection lasers: longitudinal modes and their dynamics. In: J. Piprek (ed) Optoelectronic Devices-Advanced Simulation and Analysis, pp. 121–150. Spinger Verlag, New York (2004)

    Google Scholar 

  22. Radziunas, M.: Numerical bifurcation analysis of the traveling wave model of multisection semiconductor lasers. Physica D 213, 98–112 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Schultz, W., Poprawe, R.: Manufacturing with nover high-power diode lasers. IEEE J. Select. Topics Quantum Electron. 6(4), 696–705 (2000)

    Article  Google Scholar 

  24. Spreemann, M.: Nichtlineare Effekte in Halbleiterlasern mit monolithisch integriertem trapezförmigem optischen Verstärker. Diploma thesis, Department of Physics, HU-Berlin, (2007)

    Google Scholar 

  25. Walpole, J.N.: Tutorial review: Semiconductor amplifiers and lasers with tapered gain regions. Opt. Quantum Electron. 28, 623–645 (1996)

    Article  Google Scholar 

  26. Wang, H.H.: A parallel method for tridiagonal equations. ACM Transactions on Mathematical Software 7(2), 170–183 (1981)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Laukaityte, I., Čiegis, R., Lichtner, M., Radziunas, M. (2009). Parallel Numerical Algorithm for the Traveling Wave Model. In: Parallel Scientific Computing and Optimization. Springer Optimization and Its Applications, vol 27. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09707-7_21

Download citation

Publish with us

Policies and ethics