Skip to main content

Polynomial Optimization on Odd-Dimensional Spheres

  • Chapter
  • First Online:
Emerging Applications of Algebraic Geometry

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 149))

Abstract

The sphere S 2d-1 naturally embeds into the complex affine space ℂd simplify the known Striktpcsitivstellensätze, when the supports are resticted to semi-algebraic subsets of odd dimensional spheres. We also illustrate the subtleties involved in trying to control the number of squares in a Hermitian sum of squares.

AMS(MOS) subject classifications. Primary 14PI0, Secondary 32A 70

The first author was partially supported by the National Science Foundation grant DMS-0500765.

The second author was supported in part by the Institute for Mathematics and its Applications (Minneapolis) with funds provided by the National Science Foundation and by the NSF grant DMS-0701094.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J, AGLER AND J. E. MCCARTHY, Pick interpolation and Hilbert function spaces. Graduate Studies in Mathematics. 44. Providence, RI: American Mathematical Society (2002).

    Google Scholar 

  2. N.r. AKHIEZER, The Classical Moment Problem. Oliver and Boyd, Edinburgh and London (1965).

    Google Scholar 

  3. A. ATHAVALE, Holomorphic kernels and commuting operators. Trans. Amer. Math. Soc. 304:101-110 (1987).

    Google Scholar 

  4. J.A. BALL AND T.T, TRENT, Unitary colligations, reproducing kernel Hilbert spaces, and Nevanlinna-Pick interpolation in several variables. J. Funct. Anal. 157(1):1-61 (1998).

    Google Scholar 

  5. A. BARVINOK, Integration and optimization of multivariate polynomials by restriction onto a random subspace. Foundations of Computational Mathematics 7:229-244 (2007).

    Google Scholar 

  6. D.W. CATLIN AND J.P. D'ANGELO, A stabilization theorem for Hermitian forms and applications to holomorphic mappings, Math. Res. Lett. 3(2):149-166 (1995).

    Google Scholar 

  7. --, An isometric imbedding theorem for holomorphic bundles. Math. Res. Lett. 6(1):43--60 (1999).

    Google Scholar 

  8. J.P. D'ANGELO, Inequalities from Complex Analysis, Carus Mathematical Monographs, No. 28, Mathematical Assn. of America (2002).

    Google Scholar 

  9. --, Proper holomorphic mappings, positivity conditions, and isometric imbedding J. Korean Math Soc. 40(3):341-371 (2003).

    Google Scholar 

  10. --, Complex variables analogues of Hilbert's seventeenth problem, International Journal of Mathematics 16:609-627 (2005).

    Google Scholar 

  11. J.P. D'ANGELO AND D. VAROLIN, Positivity conditions for Hermitian symmetric functions, Asian J. Math. 8:215-232 (2004).

    Google Scholar 

  12. M. EIDELHEIT, Zur Theorie der konvexen Mengen in linearen normierten Raumen. Studia Math. 6:104-111 (1936).

    Google Scholar 

  13. J. ESCHMEIER ANDM. PUTINAR, Spherical contractions and interpolation problems on the unit ball. J. Reine Angew. Math. 542:219-236 (2002).

    Google Scholar 

  14. [141 J. FARAN, Maps from the two-ball to the three-ball, Inventiones Math. 68:441-475 (1982).

    Google Scholar 

  15. C. FOIAS AND A.E. FRAZHO, The commutant lifting approach to interpolation problems. Operator Theory: Advances and Applications, 44. Basel. Birkhauser (1990).

    Google Scholar 

  16. J.W. HELTON, S. MCCULLOUGH, AND M. PUTINAR, Non-negative hereditary polynomials in a free *-algebra. Math. Zeitschrift 250:515-522 (2005).

    Google Scholar 

  17. T. ITO, On the commutative family of subnormal operators, J. Fac. Sci. Hokkaido Univ. 14:1~15 (1958).

    Google Scholar 

  18. S. KAKUTANI, Ein Beweis des Satzes von M. Eidelheit tiber konvexe Mengen. Proc. Imp. Acad. Tokyo 13, 93-94 (1937).

    Google Scholar 

  19. M.G. KREIN, M.A. NAIMARK, The method of symmetric and Hermitian forms in the theory of separation of the roots of algebraic equations. (Translated from the Russian by O. Boshko and J. L. Howland). Linear Multilinear Algebra 10:265-308 (1981).

    Google Scholar 

  20. J. E. MCCARTHY AND M. PUTINAR, Positivity aspects of the Fantappie transform. J. d'Analyse Math. 97:57-83 (2005).

    Google Scholar 

  21. J.B. LASSERRE, Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3):796---817 (2001).

    Google Scholar 

  22. A. LUBIN, Weighted shifts and commuting normal extension, J. Austral. Math. Soc. 27:17-26 (1979).

    Google Scholar 

  23. A. PRESTEL AND C.N. DELZELL, Positive polynomials. From Hilbert's 17th problem to real algebra. Springer Monographs in Mathematics. Berlin: Springer (2001).

    Google Scholar 

  24. A. P RESTEL, Representation of real commutative rings. Expo. Math. 23:89-98 (2005).

    Google Scholar 

  25. M. PUTINAR, Sur la complexification du problems des moments. C. R. Acad. Sci." Paris, Serle I 314(10):743-745 (1992).

    Google Scholar 

  26. --, Positive polynomials on compact semi-algebraic sets. Indiana Univ.. Math. J. 42(3):969~984 (1993).

    Google Scholar 

  27. --, On Hermitian polynomial optimization. Arch. Math. 87:41-5 (2006).

    Google Scholar 

  28. D.G. QUILLEN, On the representation of Hermitian forms as sums of squares. Invent. Math. 5:237-242 (1968).

    Google Scholar 

  29. F. RIESZ AND B.SZ.-NAGY, Functional analysis. Transl. from the 2nd French ed. by Leo F. Boron. Reprint of the 1955 orig. publ, by Ungar Publ. Co., Dover Books on Advanced Mathematics. New York: Dover Publications, Inc. (1990).

    Google Scholar 

  30. K. SCHMUDGEN, The K-moment problem for compact semi-algebraic sets, Math. Ann. 289~203-206 (1991).

    Google Scholar 

  31. B.SZ.-NAGY AND C. FOIAS, Analyse harmonique des operateurs de l'espace de Hilbert. Budapest: Akademiai Kiado; Paris: Masson et Cie, 1967.

    Google Scholar 

  32. J D. VAROLIN, Geometry of Hermitian algebraic functions: quotients of squared norms. American J. Math., to appear.

    Google Scholar 

  33. T. YOSHINO, On the commuting extensions of nearly normal operators, Tohoku Math. J. 25:163-172 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. D’Angelo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

D’Angelo, J.P., Putinar, M. (2009). Polynomial Optimization on Odd-Dimensional Spheres. In: Putinar, M., Sullivant, S. (eds) Emerging Applications of Algebraic Geometry. The IMA Volumes in Mathematics and its Applications, vol 149. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09686-5_1

Download citation

Publish with us

Policies and ethics