Cantilever-Based Gas Sensing


Introduction to Microcantilever-Based Sensing

Early Approaches to Mechanical Sensing

Male individuals of certain animal species like the large domestic silk moth Bombyx mori, who is the adult of the silk-thread-producing silkworm, are able to detect pheromones emitted by the female over several miles by means of their antennas. Such high sensitivity is achieved by evolution-driven optimization of chemical detection aimed for the survival of a species. A single pheromone molecule already triggers perception. However, a change of behavior only occurs at higher concentration. Highly specific receptors for certain chemical compounds are often based on the geometrical conformation of the target molecule, supported by chemical affinities and binding between specific functional groups. The adsorption process is frequently related to local conformational changes, which are of mechanical nature. Thin membranes and beams also possess mechanical properties that render them suitable for detection...


Volatile Organic Compound Surface Acoustic Wave Quartz Crystal Microbalance Position Sensitive Detector Cantilever Deflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I thank R. McKendry (University College London, London, U.K.), M. Hegner, W. Grange, Th. Braun (CRANN Dublin), Ch. Gerber, J. Zhang, A. Bietsch, V. Barwich, M. Ghatkesar, F. Huber, N. Backmann, G. Yoshikawa, J.-P. Ramseyer, A. Tonin, H.R. Hidber, E. Meyer, and H.-J. Güntherodt (University of Basel, Basel, Switzerland) for valuable contributions and discussions, as well as U. Drechsler, M. Despont, H. Schmid, E. Delamarche, H. Wolf, R. Stutz, R. Allenspach, and P.F. Seidler (IBM Research, Zurich Research Laboratory, Rüschlikon, Switzerland). I also thank the European Union FP 6 Network of Excellence FRONTIERS for support. This project is funded partially by the National Center of Competence in Research in Nanoscience (Basel, Switzerland), the Swiss National Science Foundation and the Commission for Technology and Innovation (Bern, Switzerland).


  1. 1.
    Adams JD, Rogers B, Manning L, Hu Z, Thundat T, Cavazos H, Minne SC. Piezoelectric self-sensing of adsorption-induced microcantilever bending. Sens Act A. 2005;121:457–461.CrossRefGoogle Scholar
  2. 2.
    Archibald R, Datskos P, Devault G, Lamberti V, Lavrik N, Noid D, Sepianiak M, Dutta P. Independent component analysis of Nanomechanical responses of cantilever arrays. Anal Chim Acta. 2007;584:101–105.CrossRefGoogle Scholar
  3. 3.
    Balselt DR, Fruhberger B, Klassen E, Cemalovic S, Britton Jr CL, Patel SV, Mlsna TE, McCorkle D, Warmack B. Design and performance of a microcantilever-based hydrogen sensor. Sens Act B. 2003;88:120–131.CrossRefGoogle Scholar
  4. 4.
    Berger R, Lang HP, Gerber C, Gimzewski JK, Fabian JH, Scandella L, Meyer E, Güntherodt HJ. Micromechanical thermogravimetry. Chem Phys Lett. 1998;294:363–369.CrossRefGoogle Scholar
  5. 5.
    Bietsch A, Hegner M, Lang HP, Gerber C. Inkjet deposition of alkanethiolate monolayers and DNA oligonucleotides on gold: Evaluation of spot uniformity by wet etching. Langmuir. 2004;20:5119–5122.CrossRefGoogle Scholar
  6. 6.
    Bietsch A, Zhang J, Hegner M, Lang HP, Gerber C. Rapid functionalization of cantilever array sensors by inkjet printing. Nanotechnology. 2004;15:873–880.CrossRefGoogle Scholar
  7. 7.
    Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986;56:930–933.CrossRefGoogle Scholar
  8. 8.
    Brown KB, Ma Y, Allegretto W, Lawson RPW, Vermeulen FE, Robinson AM. Microstructural pressure sensor based on an enhanced resonant mode hysteresis effect. J Vac Sci Technol B. 2001;19:1628–1632.CrossRefGoogle Scholar
  9. 9.
    Brown KB, Allegretto W, Vermeulen FE, Robinson AM. Simple resonating microstructures for gas pressure measurement. J Micromech Microeng. 2002;12:204–210.CrossRefGoogle Scholar
  10. 10.
    Brugger J, Buser RA, de Rooij NF. Micromachined atomic force microprobe with integrated capacitive read-out. J Micromech Microeng. 1992;2:218–220.CrossRefGoogle Scholar
  11. 11.
    Chapman PJ, Vogt F, Dutta P, Datskos PG, Devault GL, Sepianiak MJ. Facile hyphenation of gas chromatography and a microcantilever array sensor for enhanced selectivity. Anal Chem. 2007;79:364–370.CrossRefGoogle Scholar
  12. 12.
    Chiorino A, Ghiotti G, Prinetto F, Carotta MC, Gnani D, Martinelli G. Preparation, characterization of SnO2, MoOx-SnO2 nano-sized powders for thick film gas sensors. Sens Act B. 1999;58:338–349.CrossRefGoogle Scholar
  13. 13.
    Cleveland JP, Manne S, Bocek D, Hansma PK. A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev Sci Instrum. 1993;64:403–405.CrossRefGoogle Scholar
  14. 14.
    Comini E, Faglia G, Sberveglieri G. CO and NO2 response of tin oxide silicon doped thin films. Sens Act B. 2001;76:270–274.CrossRefGoogle Scholar
  15. 15.
    Cunningham B, Weinberg M, Pepper J, Clapp C, Bousquet R, Hugh B, Kant R, Daly C, Hauser E. Design, fabrication and vapor characterization of a microfabricated flexural plate resonator sensor and application to integrated sensor arrays. Sens Actuators B. 2001;73:112–123.CrossRefGoogle Scholar
  16. 16.
    Datskos PG, Sepaniak MJ, Tipple CA, Lavrik N. Photomechanical chemical microsensors. Sens Act B. 2001;76:393–402.CrossRefGoogle Scholar
  17. 17.
    Ewing RG, Miller CJ. Detection of volatile vapors emitted from explosives with a handheld ion mobility spectrometer. Field Anal Chem Technol. 2001;5:215–221.CrossRefGoogle Scholar
  18. 18.
    Fabre A, Finot E, Demoment J, Contreras S. Monitoring the chemical changes in Pd induced by hydrogen absorption using microcantilevers. Ultramicroscopy. 2002;97:425–432.CrossRefGoogle Scholar
  19. 19.
    Fadel L, Lochon F, Dufour I, Français O. Chemical sensing: Millimeter size resonant microcantilever performance. J Mcromech Microeng. 2004;14:S23–S30.CrossRefGoogle Scholar
  20. 20.
    Garroway AN, Buess ML, Miller JB, Suits BH, Hibbs AD, Barrall GA, Matthews R, Burnett LJ. Remote sensing by nuclear quadrupole resonance. IEEE Trans. Geosci. Remote Sens. 2001;39:1108–1118.CrossRefGoogle Scholar
  21. 21.
    Gimzewski JK, Gerber C, Meyer E, Schlittler RR. Observation of a chemical-reaction using a micromechanical sensor. Chem Phys Lett. 1994;217:589–594.CrossRefGoogle Scholar
  22. 22.
    Göddenhenrich T, Lemke H, Hartmann U, Heiden C. Force microscope with capacitive displacement detection. J Vac Sci Technol A. 1990;8:383–387.CrossRefGoogle Scholar
  23. 23.
    Grate JW. Acoustic wave microsensor arrays for vapor sensing. Chem Rev (Washington, DC) 2000;100:2627–2647.Google Scholar
  24. 24.
    Guan S. Frequency encoding of resonant mass sensors for chemical vapor detection. Anal Chem. 2003;75:4551–4557.CrossRefGoogle Scholar
  25. 25.
    Heng TMS. Trimming of microstrip circuits utilizing microcantilever air gaps. IEEE Trans Microw Theor Techn. 1971;19:652–654.CrossRefGoogle Scholar
  26. 26.
    Hierlemann A, Lange D, Hagleitner C, Kerness N, Koll A, Brand O, Baltes H. Application-specific sensor systems based on CMOS chemical microsensors. Sens Act B. 2000;70:2–11.CrossRefGoogle Scholar
  27. 27.
    Hu Z, Thundat T, Warmack RJ. Investigation of adsorption and adsorption-induced stresses using microcantilever sensors. J Appl Phys. 2001;90:427–431.CrossRefGoogle Scholar
  28. 28.
    Ibach H. Adsorbate-induced surface stress. J Vac Sci Technol A. 1994;12:2240–2243.CrossRefGoogle Scholar
  29. 29.
    Itoh T, Suga T. Force sensing microcantilevers using sputtered zinc-oxide thin-film. Appl Phys Lett. 1994;64:37–39.CrossRefGoogle Scholar
  30. 30.
    Jensenius H, Thaysen J, Rasmussen AA, Veje LH, Hansen O, Boisen A. A microcantilever-based alcohol vapor sensor-application and response model. Appl Phys Lett. 2000;76:2815–2817.CrossRefGoogle Scholar
  31. 31.
    Kolesar ES. United States Patent No. 4,549,427, filed Sept 19, 1983.Google Scholar
  32. 32.
    Kooser A, Gunter RL, Delinger WD, Porter TL, Eastman MP. Gas sensing using embedded piezoresistive microcantilever sensors. Sens Act B. 2004;99:474–479.CrossRefGoogle Scholar
  33. 33.
    Lange D, Hagleitner C, Hierlemann A, Brand O, Baltes H. Complementary metal oxide semiconductor cantilever arrays on a single chip: Mass-sensitive detection of volatile organic compounds. Anal Chem. 2002;74:3084–3095.CrossRefGoogle Scholar
  34. 34.
    Lee C, Itoh T, Ohashi T, Maeda R, Suga T. Development of a piezoelectric self-excitation and self-detection mechanism in PZT microcantilevers for dynamic scanning force microscopy in liquid. J Vac Sci Technol B. 1997;15:1559–1563.CrossRefGoogle Scholar
  35. 35.
    Lee DS, Jung JK, Lim JW, Huh JS, Lee DD. Recognition of volatile organic compounds using SnO2 sensor array and pattern recognition analysis. Sens Act B. 2001;77:228–236.CrossRefGoogle Scholar
  36. 36.
    Lochon F, Fadel L, Dufour I, Rebière D, Pistré J. Silicon made resonant microcantilever: Dependence of the chemical sensing performances on the sensitive coating thickness. Mat Sci Eng C. 2006;26:348–353.CrossRefGoogle Scholar
  37. 37.
    Longeran MC, Severin EJ, Doleman BJ, Beaber SA, Grubbs RH, Lewis NS. Array-based vapor sensing using chemically sensitive, carbon black-polymer resistors. Chem Mater. 1996;8:2298–2312.CrossRefGoogle Scholar
  38. 38.
    Mertens J, Finot E, Nadal MH, Eyraud V, Heintz O, Bourillot E. Detection of gas trace of hydrofluoric acid using microcantilever. Sens Act B. 2003;99:58–65.CrossRefGoogle Scholar
  39. 39.
    Mertens J, Finot E, Thundat T, Fabre A, Nadal MH, Eyraud V, Bourillot E. Effects of temperature and pressure on microcantilever resonance response. Ultramicroscopy. 2003;97:119–126.CrossRefGoogle Scholar
  40. 40.
    Meyer G, Amer NM. Novel optical approach to atomic force microscopy. Appl Phys Lett. 1988;53:2400–2402.CrossRefGoogle Scholar
  41. 41.
    Mortet V, Petersen R, Haenen K, D’Olieslaeger M. Wide range pressure sensor based on a piezoelectric bimorph microcantilever. Appl Phys Lett. 2006;88:133511.CrossRefGoogle Scholar
  42. 42.
    Muralidharan G, Wig A, Pinnaduwage LA, Hedden D, Thundat T, Lareau RT. Absorption-desorption characteristics of explosive vapors investigated with microcantilevers. Ultramicroscopy. 2003;97:433–439.CrossRefGoogle Scholar
  43. 43.
    O’Sullivan CK, Guilbault GG. Commercial quartz crystal microbalances – theory and applications. Biosens Bioelectron. 1999;14:663–670.CrossRefGoogle Scholar
  44. 44.
    Ono T, Li X, Miyashita H, Esashi M. Mass sensing of adsorbed molecules in sub-picogram sample with ultrathin silicon resonator. Rev Sci Instrum. 2003;74:1240–1243.CrossRefGoogle Scholar
  45. 45.
    Penza M, Cassano G, Tortorella F. Gas recognition by activated WO3 thin-film sensors array. Sens Act B. 2001;81:115–121.CrossRefGoogle Scholar
  46. 46.
    Penza M, Cassano G, Tortorella F. Identification and quantification of individual volatile organic compounds in a binary mixture by SAW multisensor array and pattern recognition analysis. Meas Sci Technol. 2002;13:846–858.CrossRefGoogle Scholar
  47. 47.
    Penza M, Cassano G. Application of principal component analysis and artificial neural networks to recognize the individual VOCs of methanol/2-propanol in a binary mixture by SAW multi-sensor array. Sens Act B. 2003;89:269–284.CrossRefGoogle Scholar
  48. 48.
    Petersen KE. Micromechanical membrane switches on silicon. IBM J Res Develop. 1979;23:376–385.CrossRefGoogle Scholar
  49. 49.
    Pinnaduwage LA, Boiadjiev V, Hawk JE, Thundat T. Sensitive detection of plastic explosives with self-assembled monolayer-coated microcantilevers. Appl Phys Lett. 2003;83:1471–1473.CrossRefGoogle Scholar
  50. 50.
    Pinnaduwage LA, Gehl A, Hedden DL, Muralidharan G, Thundat T, Lareau RT, Sulchek T, Manning L, Rogers B, Jones M, Adams JD. A microsensor for trinitrotoluene vapour. Nature. 2003;425:474.CrossRefGoogle Scholar
  51. 51.
    Pinnaduwage LA, Thundat T, Gehl A, Wilson SD, Hedden DL, Lareau RT. Desorption characteristics, of uncoated silicon microcantilever surfaces for explosive and common nonexplosive vapors. Ultramicroscopy. 2004;100:211–216.CrossRefGoogle Scholar
  52. 52.
    Pinnaduwage LA, Thundat T, Hawk JE, Hedden DL, Britt R, Houser EJ, Stepnowski S, McGill RA, Bubb D. Detection of 2,4-dinitrotoluene using microcantilever sensors. Sens Act B. 2004;99:223–229.CrossRefGoogle Scholar
  53. 53.
    Pinnaduwage LA, Wig A, Hedden DL, Gehl A, Yi D, Thundat T, Lareau RT. Detection of trinitrotoluene via deflagration on a microcantilever. J Appl Phys. 2004;95:5871–5875.CrossRefGoogle Scholar
  54. 54.
    Pinnaduwage LA, Yi D, Tian F, Thundat T, Lareau RT. Adsorption of trinitrotoluene on uncoated silicon microcantilever surfaces. Langmuir. 2004;20:2690–2694.CrossRefGoogle Scholar
  55. 55.
    Pinnaduwage LA, Ji HF, Thundat T. Moore's law in homeland defense: An integrated sensor platform based on silicon microcantilevers. IEEE Sens J. 2005;5:774–785.CrossRefGoogle Scholar
  56. 56.
    Porter TL, Eastman MP, Macomber C, Delinger WG, Zhine R. An embedded polymer piezoresistive microcantilever sensor. Ultramicroscopy. 2003;97:365–369.CrossRefGoogle Scholar
  57. 57.
    Porter TL, Vail TL, Eastman MP, Stewart R, Reed J, Venedam R, Delinger W. A solid-state sensor platform for the detection of hydrogen cyanide gas. Sens Act B. 2007;123:313–317.CrossRefGoogle Scholar
  58. 58.
    Rivera D, Alam MK, Davis CE, Ho CK. Characterization of the ability of polymeric chemiresistor arrays to quantitate trichloroethylene using partial least squares (PLS): Effects of experimental design, humidity, and temperature. Sens Act B. 2003;92:110–120.CrossRefGoogle Scholar
  59. 59.
    Satyanarayana S, McCormick DT, Majumdar A. Parylene micro membrane capacitive sensor array for chemical and biological sensing. Sens Act B. 2006;115:494–502.CrossRefGoogle Scholar
  60. 60.
    Savran CA, Burg TP, Fritz J, Manalis SR. Microfabricated mechanical biosensor with inherently differential readout. Appl Phys Lett. 2003;83:1659–1661.CrossRefGoogle Scholar
  61. 61.
    Senesac LR, Dutta P, Datskos PG, Sepianiak MJ. Analyte species and concentration identification using differentially functionalized microcantilever arrays and artificial neural networks. Anal Chim Acta. 2006;558:94–101.CrossRefGoogle Scholar
  62. 62.
    Severin EJ, Lewis NS. Relationships among resonant frequency changes on a coated quartz crystal microbalance, thickness changes, and resistance responses of polymer-carbon black composite chemiresistors. Anal Chem. 2000;72:2008–2015.CrossRefGoogle Scholar
  63. 63.
    Sievilä P, Rytkönen VP, Hahtela O, Chekurov N, Kauppinen J, Tittonen I. Fabrication and characterization of an ultrasensitive acousto-optical cantilever. J Micromech Microeng. 2007;17:852–859.CrossRefGoogle Scholar
  64. 64.
    Spetz AL, Tobias P, Uneus L, Svenningstorp H, Ekedahl LG, Lundstrom I. High temperature catalytic metal field effect transistors for industrial applications. Sens Act B. 2000;70:67–76.CrossRefGoogle Scholar
  65. 65.
    Stoney GG. The tension of thin metallic films deposited by electrolysis. Proc R Soc London Ser A. 1909;82:172–175.CrossRefGoogle Scholar
  66. 66.
    Su Y, Evans AGR, Brunnschweiler A, Ensell G. Characterization of a highly sensitive ultra-thin piezoresistive silicon cantilever probe and its application in gas flow velocity sensing. J Micromech Microeng. 2002;12:780–785.CrossRefGoogle Scholar
  67. 67.
    Then D, Vidic A, Ziegler C. A highly sensitive self-oscillating cantilever array for the quantitative and qualitative analysis of organic vapor mixtures. Sens Act B. 2006;117:1–9.CrossRefGoogle Scholar
  68. 68.
    Thundat T, Warmack RJ, Chen GY, Allison DP. Thermal and ambient-induced deflections of scanning force microscope cantilevers. Appl Phys Lett. 1994;64:2894–2896.CrossRefGoogle Scholar
  69. 69.
    Thundat T, Chen GY, Warmack RJ, Allison DP, Wachter EA. Vapor detection using resonating microcantilevers. Anal Chem. 1995;67:519–521.CrossRefGoogle Scholar
  70. 70.
    Vancura C, Rüegg M, Li Y, Hagleitner C, Hierlemann A. Magnetically actuated complementar metal oxide semiconductor resonant cantilever gas sensor systems. Anal Chem. 2005;77:2690–2699.CrossRefGoogle Scholar
  71. 71.
    Voiculescu I, Zaghloul ME, McGill RA, Houser EJ, Fedder GK. Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons. IEEE Sens J. 2005;5:641–647.CrossRefGoogle Scholar
  72. 72.
    Wilfinger RJ, Bardell PH, Chhabra DS. Resonistor – a frequency selective device utilizing mechanical resonance of a silicon substrate, IBM J Res Develop. 1968;12:113–118.CrossRefGoogle Scholar
  73. 73.
    Wohltjen H, Dessy RE. Surface acoustic probe for chemical analysis I. Introduction and instrument description. Anal Chem. 1979;51:1458–1475.CrossRefGoogle Scholar
  74. 74.
    Wohltjen H. Mechanism of operation and design considerations for surface acoustic wave device vapour sensors. Sens Act. 1984;5:307–325.CrossRefGoogle Scholar
  75. 75.
    Wright YJ, Kar AK, Kim YW, Scholz C, George MA. Study of microcapillary pipette-assisted method to prepare polyethylene glycol-coated microcantilever sensors. Sens Act B. 2005;107:242–251.CrossRefGoogle Scholar
  76. 76.
    Zhou J, Li P, Zhang S, Huang Y, Yang P, Bao M, Ruan G. Self excited piezoelectric microcantilever for gas detection. Microelectr Eng. 2003;69:37–46.CrossRefGoogle Scholar
  77. 77.
    Zhou J, Li P, Zhang S, Long Y, Zhou F, Huang Y, Yang P, Bao M. Zeolite-modifies microcantilever gas sensor for indoor air quality control. Sens Act B. 2003;94:337–342.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.National Center of Competence for Research in Nanoscale ScienceInstitute of Physics of the University of Basel4056 BaselSwitzerland

Personalised recommendations