Skip to main content

Cantilever-Based Gas Sensing

  • Chapter
  • First Online:
Book cover Solid State Gas Sensing

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams JD, Rogers B, Manning L, Hu Z, Thundat T, Cavazos H, Minne SC. Piezoelectric self-sensing of adsorption-induced microcantilever bending. Sens Act A. 2005;121:457–461.

    Article  Google Scholar 

  2. Archibald R, Datskos P, Devault G, Lamberti V, Lavrik N, Noid D, Sepianiak M, Dutta P. Independent component analysis of Nanomechanical responses of cantilever arrays. Anal Chim Acta. 2007;584:101–105.

    Article  CAS  Google Scholar 

  3. Balselt DR, Fruhberger B, Klassen E, Cemalovic S, Britton Jr CL, Patel SV, Mlsna TE, McCorkle D, Warmack B. Design and performance of a microcantilever-based hydrogen sensor. Sens Act B. 2003;88:120–131.

    Article  Google Scholar 

  4. Berger R, Lang HP, Gerber C, Gimzewski JK, Fabian JH, Scandella L, Meyer E, Güntherodt HJ. Micromechanical thermogravimetry. Chem Phys Lett. 1998;294:363–369.

    Article  CAS  Google Scholar 

  5. Bietsch A, Hegner M, Lang HP, Gerber C. Inkjet deposition of alkanethiolate monolayers and DNA oligonucleotides on gold: Evaluation of spot uniformity by wet etching. Langmuir. 2004;20:5119–5122.

    Article  CAS  Google Scholar 

  6. Bietsch A, Zhang J, Hegner M, Lang HP, Gerber C. Rapid functionalization of cantilever array sensors by inkjet printing. Nanotechnology. 2004;15:873–880.

    Article  CAS  Google Scholar 

  7. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986;56:930–933.

    Article  Google Scholar 

  8. Brown KB, Ma Y, Allegretto W, Lawson RPW, Vermeulen FE, Robinson AM. Microstructural pressure sensor based on an enhanced resonant mode hysteresis effect. J Vac Sci Technol B. 2001;19:1628–1632.

    Article  Google Scholar 

  9. Brown KB, Allegretto W, Vermeulen FE, Robinson AM. Simple resonating microstructures for gas pressure measurement. J Micromech Microeng. 2002;12:204–210.

    Article  CAS  Google Scholar 

  10. Brugger J, Buser RA, de Rooij NF. Micromachined atomic force microprobe with integrated capacitive read-out. J Micromech Microeng. 1992;2:218–220.

    Article  CAS  Google Scholar 

  11. Chapman PJ, Vogt F, Dutta P, Datskos PG, Devault GL, Sepianiak MJ. Facile hyphenation of gas chromatography and a microcantilever array sensor for enhanced selectivity. Anal Chem. 2007;79:364–370.

    Article  CAS  Google Scholar 

  12. Chiorino A, Ghiotti G, Prinetto F, Carotta MC, Gnani D, Martinelli G. Preparation, characterization of SnO2, MoOx-SnO2 nano-sized powders for thick film gas sensors. Sens Act B. 1999;58:338–349.

    Article  Google Scholar 

  13. Cleveland JP, Manne S, Bocek D, Hansma PK. A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev Sci Instrum. 1993;64:403–405.

    Article  CAS  Google Scholar 

  14. Comini E, Faglia G, Sberveglieri G. CO and NO2 response of tin oxide silicon doped thin films. Sens Act B. 2001;76:270–274.

    Article  Google Scholar 

  15. Cunningham B, Weinberg M, Pepper J, Clapp C, Bousquet R, Hugh B, Kant R, Daly C, Hauser E. Design, fabrication and vapor characterization of a microfabricated flexural plate resonator sensor and application to integrated sensor arrays. Sens Actuators B. 2001;73:112–123.

    Article  Google Scholar 

  16. Datskos PG, Sepaniak MJ, Tipple CA, Lavrik N. Photomechanical chemical microsensors. Sens Act B. 2001;76:393–402.

    Article  Google Scholar 

  17. Ewing RG, Miller CJ. Detection of volatile vapors emitted from explosives with a handheld ion mobility spectrometer. Field Anal Chem Technol. 2001;5:215–221.

    Article  CAS  Google Scholar 

  18. Fabre A, Finot E, Demoment J, Contreras S. Monitoring the chemical changes in Pd induced by hydrogen absorption using microcantilevers. Ultramicroscopy. 2002;97:425–432.

    Article  Google Scholar 

  19. Fadel L, Lochon F, Dufour I, Français O. Chemical sensing: Millimeter size resonant microcantilever performance. J Mcromech Microeng. 2004;14:S23–S30.

    Article  CAS  Google Scholar 

  20. Garroway AN, Buess ML, Miller JB, Suits BH, Hibbs AD, Barrall GA, Matthews R, Burnett LJ. Remote sensing by nuclear quadrupole resonance. IEEE Trans. Geosci. Remote Sens. 2001;39:1108–1118.

    Article  Google Scholar 

  21. Gimzewski JK, Gerber C, Meyer E, Schlittler RR. Observation of a chemical-reaction using a micromechanical sensor. Chem Phys Lett. 1994;217:589–594.

    Article  CAS  Google Scholar 

  22. Göddenhenrich T, Lemke H, Hartmann U, Heiden C. Force microscope with capacitive displacement detection. J Vac Sci Technol A. 1990;8:383–387.

    Article  Google Scholar 

  23. Grate JW. Acoustic wave microsensor arrays for vapor sensing. Chem Rev (Washington, DC) 2000;100:2627–2647.

    CAS  Google Scholar 

  24. Guan S. Frequency encoding of resonant mass sensors for chemical vapor detection. Anal Chem. 2003;75:4551–4557.

    Article  CAS  Google Scholar 

  25. Heng TMS. Trimming of microstrip circuits utilizing microcantilever air gaps. IEEE Trans Microw Theor Techn. 1971;19:652–654.

    Article  Google Scholar 

  26. Hierlemann A, Lange D, Hagleitner C, Kerness N, Koll A, Brand O, Baltes H. Application-specific sensor systems based on CMOS chemical microsensors. Sens Act B. 2000;70:2–11.

    Article  Google Scholar 

  27. Hu Z, Thundat T, Warmack RJ. Investigation of adsorption and adsorption-induced stresses using microcantilever sensors. J Appl Phys. 2001;90:427–431.

    Article  CAS  Google Scholar 

  28. Ibach H. Adsorbate-induced surface stress. J Vac Sci Technol A. 1994;12:2240–2243.

    Article  CAS  Google Scholar 

  29. Itoh T, Suga T. Force sensing microcantilevers using sputtered zinc-oxide thin-film. Appl Phys Lett. 1994;64:37–39.

    Article  CAS  Google Scholar 

  30. Jensenius H, Thaysen J, Rasmussen AA, Veje LH, Hansen O, Boisen A. A microcantilever-based alcohol vapor sensor-application and response model. Appl Phys Lett. 2000;76:2815–2817.

    Article  Google Scholar 

  31. Kolesar ES. United States Patent No. 4,549,427, filed Sept 19, 1983.

    Google Scholar 

  32. Kooser A, Gunter RL, Delinger WD, Porter TL, Eastman MP. Gas sensing using embedded piezoresistive microcantilever sensors. Sens Act B. 2004;99:474–479.

    Article  Google Scholar 

  33. Lange D, Hagleitner C, Hierlemann A, Brand O, Baltes H. Complementary metal oxide semiconductor cantilever arrays on a single chip: Mass-sensitive detection of volatile organic compounds. Anal Chem. 2002;74:3084–3095.

    Article  CAS  Google Scholar 

  34. Lee C, Itoh T, Ohashi T, Maeda R, Suga T. Development of a piezoelectric self-excitation and self-detection mechanism in PZT microcantilevers for dynamic scanning force microscopy in liquid. J Vac Sci Technol B. 1997;15:1559–1563.

    Article  CAS  Google Scholar 

  35. Lee DS, Jung JK, Lim JW, Huh JS, Lee DD. Recognition of volatile organic compounds using SnO2 sensor array and pattern recognition analysis. Sens Act B. 2001;77:228–236.

    Article  Google Scholar 

  36. Lochon F, Fadel L, Dufour I, Rebière D, Pistré J. Silicon made resonant microcantilever: Dependence of the chemical sensing performances on the sensitive coating thickness. Mat Sci Eng C. 2006;26:348–353.

    Article  CAS  Google Scholar 

  37. Longeran MC, Severin EJ, Doleman BJ, Beaber SA, Grubbs RH, Lewis NS. Array-based vapor sensing using chemically sensitive, carbon black-polymer resistors. Chem Mater. 1996;8:2298–2312.

    Article  Google Scholar 

  38. Mertens J, Finot E, Nadal MH, Eyraud V, Heintz O, Bourillot E. Detection of gas trace of hydrofluoric acid using microcantilever. Sens Act B. 2003;99:58–65.

    Article  Google Scholar 

  39. Mertens J, Finot E, Thundat T, Fabre A, Nadal MH, Eyraud V, Bourillot E. Effects of temperature and pressure on microcantilever resonance response. Ultramicroscopy. 2003;97:119–126.

    Article  CAS  Google Scholar 

  40. Meyer G, Amer NM. Novel optical approach to atomic force microscopy. Appl Phys Lett. 1988;53:2400–2402.

    Article  Google Scholar 

  41. Mortet V, Petersen R, Haenen K, D’Olieslaeger M. Wide range pressure sensor based on a piezoelectric bimorph microcantilever. Appl Phys Lett. 2006;88:133511.

    Article  Google Scholar 

  42. Muralidharan G, Wig A, Pinnaduwage LA, Hedden D, Thundat T, Lareau RT. Absorption-desorption characteristics of explosive vapors investigated with microcantilevers. Ultramicroscopy. 2003;97:433–439.

    Article  CAS  Google Scholar 

  43. O’Sullivan CK, Guilbault GG. Commercial quartz crystal microbalances – theory and applications. Biosens Bioelectron. 1999;14:663–670.

    Article  Google Scholar 

  44. Ono T, Li X, Miyashita H, Esashi M. Mass sensing of adsorbed molecules in sub-picogram sample with ultrathin silicon resonator. Rev Sci Instrum. 2003;74:1240–1243.

    Article  CAS  Google Scholar 

  45. Penza M, Cassano G, Tortorella F. Gas recognition by activated WO3 thin-film sensors array. Sens Act B. 2001;81:115–121.

    Article  Google Scholar 

  46. Penza M, Cassano G, Tortorella F. Identification and quantification of individual volatile organic compounds in a binary mixture by SAW multisensor array and pattern recognition analysis. Meas Sci Technol. 2002;13:846–858.

    Article  CAS  Google Scholar 

  47. Penza M, Cassano G. Application of principal component analysis and artificial neural networks to recognize the individual VOCs of methanol/2-propanol in a binary mixture by SAW multi-sensor array. Sens Act B. 2003;89:269–284.

    Article  Google Scholar 

  48. Petersen KE. Micromechanical membrane switches on silicon. IBM J Res Develop. 1979;23:376–385.

    Article  CAS  Google Scholar 

  49. Pinnaduwage LA, Boiadjiev V, Hawk JE, Thundat T. Sensitive detection of plastic explosives with self-assembled monolayer-coated microcantilevers. Appl Phys Lett. 2003;83:1471–1473.

    Article  CAS  Google Scholar 

  50. Pinnaduwage LA, Gehl A, Hedden DL, Muralidharan G, Thundat T, Lareau RT, Sulchek T, Manning L, Rogers B, Jones M, Adams JD. A microsensor for trinitrotoluene vapour. Nature. 2003;425:474.

    Article  CAS  Google Scholar 

  51. Pinnaduwage LA, Thundat T, Gehl A, Wilson SD, Hedden DL, Lareau RT. Desorption characteristics, of uncoated silicon microcantilever surfaces for explosive and common nonexplosive vapors. Ultramicroscopy. 2004;100:211–216.

    Article  CAS  Google Scholar 

  52. Pinnaduwage LA, Thundat T, Hawk JE, Hedden DL, Britt R, Houser EJ, Stepnowski S, McGill RA, Bubb D. Detection of 2,4-dinitrotoluene using microcantilever sensors. Sens Act B. 2004;99:223–229.

    Article  Google Scholar 

  53. Pinnaduwage LA, Wig A, Hedden DL, Gehl A, Yi D, Thundat T, Lareau RT. Detection of trinitrotoluene via deflagration on a microcantilever. J Appl Phys. 2004;95:5871–5875.

    Article  CAS  Google Scholar 

  54. Pinnaduwage LA, Yi D, Tian F, Thundat T, Lareau RT. Adsorption of trinitrotoluene on uncoated silicon microcantilever surfaces. Langmuir. 2004;20:2690–2694.

    Article  CAS  Google Scholar 

  55. Pinnaduwage LA, Ji HF, Thundat T. Moore's law in homeland defense: An integrated sensor platform based on silicon microcantilevers. IEEE Sens J. 2005;5:774–785.

    Article  CAS  Google Scholar 

  56. Porter TL, Eastman MP, Macomber C, Delinger WG, Zhine R. An embedded polymer piezoresistive microcantilever sensor. Ultramicroscopy. 2003;97:365–369.

    Article  CAS  Google Scholar 

  57. Porter TL, Vail TL, Eastman MP, Stewart R, Reed J, Venedam R, Delinger W. A solid-state sensor platform for the detection of hydrogen cyanide gas. Sens Act B. 2007;123:313–317.

    Article  Google Scholar 

  58. Rivera D, Alam MK, Davis CE, Ho CK. Characterization of the ability of polymeric chemiresistor arrays to quantitate trichloroethylene using partial least squares (PLS): Effects of experimental design, humidity, and temperature. Sens Act B. 2003;92:110–120.

    Article  Google Scholar 

  59. Satyanarayana S, McCormick DT, Majumdar A. Parylene micro membrane capacitive sensor array for chemical and biological sensing. Sens Act B. 2006;115:494–502.

    Article  Google Scholar 

  60. Savran CA, Burg TP, Fritz J, Manalis SR. Microfabricated mechanical biosensor with inherently differential readout. Appl Phys Lett. 2003;83:1659–1661.

    Article  CAS  Google Scholar 

  61. Senesac LR, Dutta P, Datskos PG, Sepianiak MJ. Analyte species and concentration identification using differentially functionalized microcantilever arrays and artificial neural networks. Anal Chim Acta. 2006;558:94–101.

    Article  CAS  Google Scholar 

  62. Severin EJ, Lewis NS. Relationships among resonant frequency changes on a coated quartz crystal microbalance, thickness changes, and resistance responses of polymer-carbon black composite chemiresistors. Anal Chem. 2000;72:2008–2015.

    Article  CAS  Google Scholar 

  63. Sievilä P, Rytkönen VP, Hahtela O, Chekurov N, Kauppinen J, Tittonen I. Fabrication and characterization of an ultrasensitive acousto-optical cantilever. J Micromech Microeng. 2007;17:852–859.

    Article  Google Scholar 

  64. Spetz AL, Tobias P, Uneus L, Svenningstorp H, Ekedahl LG, Lundstrom I. High temperature catalytic metal field effect transistors for industrial applications. Sens Act B. 2000;70:67–76.

    Article  Google Scholar 

  65. Stoney GG. The tension of thin metallic films deposited by electrolysis. Proc R Soc London Ser A. 1909;82:172–175.

    Article  CAS  Google Scholar 

  66. Su Y, Evans AGR, Brunnschweiler A, Ensell G. Characterization of a highly sensitive ultra-thin piezoresistive silicon cantilever probe and its application in gas flow velocity sensing. J Micromech Microeng. 2002;12:780–785.

    Article  Google Scholar 

  67. Then D, Vidic A, Ziegler C. A highly sensitive self-oscillating cantilever array for the quantitative and qualitative analysis of organic vapor mixtures. Sens Act B. 2006;117:1–9.

    Article  Google Scholar 

  68. Thundat T, Warmack RJ, Chen GY, Allison DP. Thermal and ambient-induced deflections of scanning force microscope cantilevers. Appl Phys Lett. 1994;64:2894–2896.

    Article  CAS  Google Scholar 

  69. Thundat T, Chen GY, Warmack RJ, Allison DP, Wachter EA. Vapor detection using resonating microcantilevers. Anal Chem. 1995;67:519–521.

    Article  CAS  Google Scholar 

  70. Vancura C, Rüegg M, Li Y, Hagleitner C, Hierlemann A. Magnetically actuated complementar metal oxide semiconductor resonant cantilever gas sensor systems. Anal Chem. 2005;77:2690–2699.

    Article  CAS  Google Scholar 

  71. Voiculescu I, Zaghloul ME, McGill RA, Houser EJ, Fedder GK. Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons. IEEE Sens J. 2005;5:641–647.

    Article  CAS  Google Scholar 

  72. Wilfinger RJ, Bardell PH, Chhabra DS. Resonistor – a frequency selective device utilizing mechanical resonance of a silicon substrate, IBM J Res Develop. 1968;12:113–118.

    Article  Google Scholar 

  73. Wohltjen H, Dessy RE. Surface acoustic probe for chemical analysis I. Introduction and instrument description. Anal Chem. 1979;51:1458–1475.

    Article  CAS  Google Scholar 

  74. Wohltjen H. Mechanism of operation and design considerations for surface acoustic wave device vapour sensors. Sens Act. 1984;5:307–325.

    Article  CAS  Google Scholar 

  75. Wright YJ, Kar AK, Kim YW, Scholz C, George MA. Study of microcapillary pipette-assisted method to prepare polyethylene glycol-coated microcantilever sensors. Sens Act B. 2005;107:242–251.

    Article  Google Scholar 

  76. Zhou J, Li P, Zhang S, Huang Y, Yang P, Bao M, Ruan G. Self excited piezoelectric microcantilever for gas detection. Microelectr Eng. 2003;69:37–46.

    Article  CAS  Google Scholar 

  77. Zhou J, Li P, Zhang S, Long Y, Zhou F, Huang Y, Yang P, Bao M. Zeolite-modifies microcantilever gas sensor for indoor air quality control. Sens Act B. 2003;94:337–342.

    Article  Google Scholar 

Download references

Acknowledgments

I thank R. McKendry (University College London, London, U.K.), M. Hegner, W. Grange, Th. Braun (CRANN Dublin), Ch. Gerber, J. Zhang, A. Bietsch, V. Barwich, M. Ghatkesar, F. Huber, N. Backmann, G. Yoshikawa, J.-P. Ramseyer, A. Tonin, H.R. Hidber, E. Meyer, and H.-J. Güntherodt (University of Basel, Basel, Switzerland) for valuable contributions and discussions, as well as U. Drechsler, M. Despont, H. Schmid, E. Delamarche, H. Wolf, R. Stutz, R. Allenspach, and P.F. Seidler (IBM Research, Zurich Research Laboratory, Rüschlikon, Switzerland). I also thank the European Union FP 6 Network of Excellence FRONTIERS for support. This project is funded partially by the National Center of Competence in Research in Nanoscience (Basel, Switzerland), the Swiss National Science Foundation and the Commission for Technology and Innovation (Bern, Switzerland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Peter Lang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lang, H.P. (2009). Cantilever-Based Gas Sensing. In: Comini, E., Faglia, G., Sberveglieri, G. (eds) Solid State Gas Sensing. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09665-0_9

Download citation

Publish with us

Policies and ethics