Acoustic Wave Gas and Vapor Sensors



Acoustic wave devices are based on high-frequency mechanical vibrations. Originally developed for precision radio frequency (rf) signal-processing applications, they are widely utilized in mobile and wireless communications, and are routinely found in most modern day electronics [1]. As pointed out by Ballantine and Wohltjen [2], their inherent sensitivity to ambient environmental effects, which requires hermetic shielding or isolation in signal processing applications, has ironically become a windfall in the field of chemical and physical sensing.

Acoustic-wave based sensors offer a simple, direct and sensitive method for probing the chemical and physical properties of materials. The term acoustic is commonly used in the literature, even when referring to frequencies which are well above the audible range. Acoustic waves cover a frequency range of 14 orders of magnitude – from 10–2 Hz (seismic waves) and extending to 1012 Hz (thermo-elastic excited phonons) [3]. Acoustic...


Acoustic Wave Piezoelectric Material Surface Acoustic Wave Quartz Crystal Microbalance Sensitive Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Campbell CK. Surface Acoustic Wave Devices for Mobile and Wireless Communications. San Diego, USA: Academic Press; 1998.Google Scholar
  2. 2.
    Ballantine DS, Wohltjen H. Surface acoustic wave devices for chemical analysis. Anal Chem. 1989;61:704–715.Google Scholar
  3. 3.
    Janshoff A, Galla H-J and Steinem C. Piezoelectric mass-sensing devices as biosensors – an alternative to optical biosensors? Angew Chem Int Edit. 2000;39:4004–4032.Google Scholar
  4. 4.
    Ballantine DS, White RM, Martin SJ, Ricco AJ, Zellers ET, Frye G C et al. Acoustic Wave Sensors: Theory, Design, & Physico-Chemical Applications (Applications of Modern Acoustics). San Diego, USA: Academic Press; 1996.Google Scholar
  5. 5.
    Wohltjen H, Dessy R. Surface acoustic-wave probe for chemical-analysis .1. Introduction and Instrument Description. Anal Chem. 1979;51:1458–1464.Google Scholar
  6. 6.
    Powell DA, Kalantar-zadeh K, Wlodarski W, Ippolito SJ. Layered surface acoustic wave chemical and Bio-Sensors. In: CA Grimes, EC Dickey, MV Pishko, editors. Encyclopedia of Sensors. California, USA: American Scientific Publishers, Stevenson Ranch; 2006.Google Scholar
  7. 7.
    Ricco AJ, Martin SJ. Thin metal-film characterization and chemical sensors: Monitoring electronic conductivity, mass loading and mechanical properties with surface acoustic wave devices. Thin Solid Films. 1991;206:94–101.Google Scholar
  8. 8.
    Auld BA. Acoustic Fields and Waves in Solids. Malabar, Florida, USA: Krieger Publishing Company; 1990.Google Scholar
  9. 9.
    Morgan DP. Surface-Wave Devices for Signal Processing. Amsterdam, The Netherlands: Elsevier; 1991.Google Scholar
  10. 10.
    Cheeke JDN. Fundamentals and Applications of Ultrasonics Waves. Boca Raton, USA: CRC Press; 2001.Google Scholar
  11. 11.
    Ballantine DS, White RM, Martin SJ, Ricco AJ, Frye GC, Zellers E T et al. Acoustic Wave Sensors: theory, design and Physico-Chemical Applications. New York, USA: Academic Press; 1997.Google Scholar
  12. 12.
    Ward MD, Buttry DA. Insitu interfacial mass detection with piezoelectric transducers. Science. 1990;249:1000–1007.Google Scholar
  13. 13.
    Di Natale C, Davide F A M and D'Amico A. A self-organizing system for pattern classification: Time varying statistics and sensor drift effects. Sens Actuators B. 1995;27:237–241.Google Scholar
  14. 14.
    D'Amico A and Verona E. SAW Sensors. Sens Actuators. 1989;17:55–66.Google Scholar
  15. 15.
    Grate JW, Rosepehrsson SL, Venezky DL, Klusty M, Wohltjen H. Smart sensor system for trace organophosphorus and organosulfur vapor detection employing a temperature-controlled array of surface-acoustic-wave sensors, automated sample preconcentration, and pattern-recognition. Anal Chem. 1993;65:1868–1881.Google Scholar
  16. 16.
    Grate JW, Martin SJ, White RM. Acoustic-wave microsensors. Anal Chem. 1993a;65: A940–A948.Google Scholar
  17. 17.
    Grate JW, Martin SJ, White RM. Acoustic-wave microsensors. Anal Chem. 1993b; 65:A987–A996Google Scholar
  18. 18.
    Fernandez MJ, Fontecha JL, Sayago I, Aleixandre M, Lozano J, Gutierrez J et al. Discrimination of volatile ccompounds through an electronic nose based on ZnO SAW sensors. Sens Actuators B. 2007;127:277–283.Google Scholar
  19. 19.
    Joo BS, Huh JS, Lee DD. Fabrication of polymer SAW sensor array to classify chemical warfare agents. Sens Actuators B. 2007;121:47–53.Google Scholar
  20. 20.
    Mistura G, Lee HC, Chan MHW. Hydrogen adsorption on alkali-metal surfaces – wetting, prewetting and triple-point wetting. J Low Temp Phys. 1994;96:221–244.Google Scholar
  21. 21.
    Sauerbrey GZ. The use of quartz oscillators for weighing thin layers and for microweighing. Z Physik. 1959;155:206–222.Google Scholar
  22. 22.
    Buck RP, Lindner E, Kutner W, Inzelt G. Piezoelectric chemical sensors. Pure Appl Chem. 2004;76:1139–1160.Google Scholar
  23. 23.
    Cheeke JDN, Wang Z. Acoustic wave gas sensors. Sens Actuators B. 1999;59:146–153.Google Scholar
  24. 24.
    Wenzel SW, White RM. Analytic comparison of the sensitivities of bulk-wave, surface-wave, and flexural plate-wave ultrasonic gravimetric sensors. Appl Phys Lett. 1989;54:1976–1978.Google Scholar
  25. 25.
    Lakin KM, Wang JS. Acoustic bulk wave composite resonators. Appl Phys Lett. 1981;38: 125–127.Google Scholar
  26. 26.
    King WH. Piezoelectric sorption detector. Anal Chem. 1964;36:1735.Google Scholar
  27. 27.
    Krim J, Dash JG. Suzanne J. Triple-point wetting of light molecular gases on Au(111) surfaces. Phys Rev Lett. 1984;52:640–643.Google Scholar
  28. 28.
    Mistura G, Lee HC, Chan MHW. Quartz microbalance study of hydrogen and helium adsorbed on a rubidium surface. Physica B. 1994;194:661–662.Google Scholar
  29. 29.
    Lu C, Cazanderna AW. Applications of piezoelectric quartz crystal microbalances. Amsterdam, The Netherlands: North-Holland; 1984.Google Scholar
  30. 30.
    Henkel K, Oprea A, Paloumpa I, Appel G, Schmeisser D, Kamieth P. Selective polypyrrole electrodes for quartz microbalances: NO2 and gas flux sensitivities. Sens Actuators B. 2001;76:124–129.Google Scholar
  31. 31.
    Nanto H, Dougami N, Mukai T, Habara M, Kusano E, Kinbara A et al. A smart gas sensor using Polymer-Film-Coated quartz resonator microbalance. Sens Actuators B. 2000;66:16–18.Google Scholar
  32. 32.
    Nanto H, Tsubakino S, Habara M, Kondo K, Morita T, Douguchi Y et al. A novel chemical sensor using CH3Si(OCH3)3 sol-gel thin film coated quartz-resonator microbalance. Sens Actuators B. 1996;34:312–316.Google Scholar
  33. 33.
    Brousseau LC, Mallouk TE. Molecular design of intercalation based sensors. 1. Ammonia sensing with quartz crystal microbalances modified by copper biphenylbis(Phosphonate) thin films. Anal Chem. 1997;69:679–687.Google Scholar
  34. 34.
    Dickert FL, Baumler UPA, Stathopulos H. Mass-sensitive solvent vapor detection with Calix 4 resorcinarenes: tuning sensitivity and predicting sensor effects. Anal Chem. 1997;69:1000–1005.Google Scholar
  35. 35.
    Zhou R, Josse F, Gopel W, Ozturk ZZ, Bekaroglu O. Phthalocyanines as sensitive materials for chemical sensors. Appl Organomet Chem. 1996;10:557–577.Google Scholar
  36. 36.
    Okahata Y, Matsuura K, Ito K, Ebara Y. Gas-phase selective adsorption on functional monolayers immobilized on a highly sensitive quartz-crystal microbalance. Langmuir. 1996;12:1023–1026.Google Scholar
  37. 37.
    Schroder J, Borngraber R, Eichelbaum F, Hauptmann P. Advanced interface electronics and methods for QCM. Sens Actuators A. 2002;97–8:543–547.Google Scholar
  38. 38.
    Bruschi L, Delfitto G, Mistura G. Inexpensive but accurate drving circuits for quartz crystal microbalances. Rev Sci Instr. 1999;70:153–157.Google Scholar
  39. 39.
    Nakamura K, Nakamoto T and Moriizumi T. Classification and evaluation of sensing films for QCM odor sensors by steady-state sensor response measurement. Sens Actuators B. 2000;69:295–301.Google Scholar
  40. 40.
    Islam A, Ismail Z, Ahmad MN, Saad B, Othman AR, Shakaff AYM et al. Transient parameters of a coated quartz-crystal microbalance sensor for the detection of Volatile Organic Compounds (VOCs). Sens Actuators B. 2005;109:238–243.Google Scholar
  41. 41.
    Rocha-Santos TAP, Gomes M, Duarte AC, Oliveira J. A quartz crystal microbalance sensor for the determination of nitroaromatics in landfill gas. Talanta. 2000;51: 1149–1153.Google Scholar
  42. 42.
    Zhang J, Hu J, Zhu ZQ, Gong H, O'Shea SJ. Quartz crystal microbalance coated with sol-gel-derived indium-tin oxide thin films as gas sensor for NO detection. Colloid Surf A. 2004;236:23–30.Google Scholar
  43. 43.
    Sartore L, Penco M, Della Sciucca S, Borsarini G, Ferrari V. New carbon black composite vapor detectors based on multifunctional polymers. Sens Actuators B. 2005;111:160–165.Google Scholar
  44. 44.
    Kim SR, Choi SA, Kim JD, Kim KJ, Lee C, Rhee SB. Preparation of polythiophene LB films and their gas sensitivities by the suartz-crystal microbalance. Synth Met. 1995;71:2027–2028.Google Scholar
  45. 45.
    Matsuura K, Ebara Y, Okahata Y. Guest selective adsorption from the gas phase onto a functional self-assembled monolayer immobilized on a super-sensitive quartz-crystal microbalance. Thin Solid Films. 1996;273:61–65.Google Scholar
  46. 46.
    Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA et al. Molecular imprinting science and technology: A survey of the literature for the years up to and including 2003. J Mol Recognit. 2006;19:106–180.Google Scholar
  47. 47.
    Hirayama K, Sakai Y, Kameoka K, Noda K, Naganawa R. Preparation of a sensor device with specific recognition sites for acetaldehyde by molecular imprinting technique. Sens Actuators B. 2002;86:20–25.Google Scholar
  48. 48.
    Feng L, Liu YJ, Zhou XD, Hu JM. The fabrication and characterization of a formaldehyde odor sensor using molecularly imprinted polymers. J Colloid Interface Sci. 2005;284:378–382.Google Scholar
  49. 49.
    Ferrari M, Ferrari V, Marioli D, Taroni A, Suman M, Dalcanale E. Cavitand-coated PZT resonant piezo-layer sensors: Properties, structure, and comparison with QCM sensors at different temperatures under exposure to organic vapors. Sens Actuators B. 2004;103:240–246.Google Scholar
  50. 50.
    Schierbaum KD, Weiss T, Vanvelzen EUT, Engbersen JFJ, Reinhoudt DN, Gopel W. Molecular recognition by self-assembled monolayers of cavitand receptors. Science. 1994;265:1413–1415.Google Scholar
  51. 51.
    Hartmann J, Hauptmann P, Levi S, Dalcanale E. Chemical sensing with cavitands: Influence of cavity shape and dimensions on the detection of solvent vapors. Sens Actuators B. 1996;35:154–157.Google Scholar
  52. 52.
    Dalcanale E, Hartmann J. Selective detection of organic-compounds by means of cavitand-coated QCM transducers. Sens Actuators B. 1995;24:39–42.Google Scholar
  53. 53.
    Osada M, Sasaki I, Nishioka M, Sadakata M, Okubo T. Synthesis of a faujasite thin layer and its application for SO2 sensing at elevated temperatures. Microporous Mesoporous Mat. 1998;23:287–294.Google Scholar
  54. 54.
    Sasaki I, Tsuchiya H, Nishioka M, Sadakata M, Okubo T. Gas sensing with zeolite-coated quartz crystal microbalances-principal component analysis approach. Sens Actuators B. 2002;86:26–33.Google Scholar
  55. 55.
    Yan YG, Bein T. Molecular recognition on acoustic-wave devices – sorption in chemically anchored zeolite monolayers. J Phys Chem. 1992;96:9387–9393.Google Scholar
  56. 56.
    Bein T, Brown K, Frye GC, Brinker CJ. Molecular-sieve sensors for selective detection at the nanogram level. J Am Chem Soc. 1989;111:7640–7641.Google Scholar
  57. 57.
    Ding B, Kim JH, Miyazaki Y, Shiratori SM. Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection. Sens Actuators B. 2004;101:373–380.Google Scholar
  58. 58.
    Zhang YS, Yu K, Xu RL, Jiang DS, Luo LQ, Zhu ZQ. Quartz crystal microbalance coated with carbon nanotube films used as humidity sensor. Sens Actuators A. 2005;120:142–146.Google Scholar
  59. 59.
    Consales M, Campopiano S, Cutolo A, Penza M, Aversa P, Cassano G et al. Carbon nanotubes thin films fiber optic and acoustic VOCs sensors: Performances analysis. Sens Actuators B. 2006;118:232–242.Google Scholar
  60. 60.
    Consales M, Campopiano S, Cutolo A, Penza M, Aversa P, Cassano G et al. Sensing properties of buffered and not buffered carbon nanotubes by fibre optic and acoustic sensors. Meas Sci Technol. 2006;17:1220–1228.Google Scholar
  61. 61.
    Penza M, Cassano G, Aversa P, Antolini F, Cusano A, Consales M et al. Carbon nanotubes-coated multi-transducing sensors for VOCs detection. Sens Actuators B. 2005;111:171–180.Google Scholar
  62. 62.
    Penza M, Cassano G, Aversa P, Antolini F, Cusano A, Cutolo A et al. Alcohol detection using carbon nanotubes acoustic and optical sensors. Appl Phys Lett. 2004;85:2379–2381.Google Scholar
  63. 63.
    Penza M, Cassano G, Aversa P, Cusano A, Consales M, Giordano M et al. Acoustic and optical VOCs sensors incorporating carbon nanotubes. IEEE Sens J. 2006;6:867–875.Google Scholar
  64. 64.
    Scheide EP, Taylor JK. Piezoelectric crystal dosimeter for monitoring mercury-vapor in industrial atmospheres. Am Ind Hyg Assoc J. 1975;36:897–901.Google Scholar
  65. 65.
    Schroeder WH, Munthe J. Atmospheric mercury – an overview. Atmos Environ. 1998;32:809–822.Google Scholar
  66. 66.
    Dhawan D, Bhargava S, Tardio J, Wlodarski W. Kalantar-zadeh K. Gold coated nanostructured molybdenum oxide mercury vapour quartz crystal microbalance sensor. Sens Lett. 2008;6(1):231–236.Google Scholar
  67. 67.
    Nakamoto T, Moriizumi T. Artificial olfactory system using neural network. In: H Yamazaki, editor. Handbook of Sensors and Actuators. Amsterdam, The Netherlands: Elsevier;1996.Google Scholar
  68. 68.
    Shen F, Lee KH, O'Shea SJ, Lu P, Ng TY. Frequency interference between two quartz crystal microbalances. IEEE Sens J. 2003;3:274–281.Google Scholar
  69. 69.
    Abe T, Esashi M. One-chip multichannel Quartz Crystal Microbalance (QCM) fabricated by deep RIE. Sens Actuators A. 2000;82:139–143.Google Scholar
  70. 70.
    Worsch PM, Koppelhuber-Bitschnau B, Mautner FA, Krempl PW, Wallnofer W, Doppler P et al. High temperature X-Ray powder diffraction study on the phase transition between the alpha-quartz and the beta-cristobalite-like phase of GaPO4. Mater Sci Forum. 2000;321–323:914–917.Google Scholar
  71. 71.
    Pedarnig JD, Peruzzi M, Salhofer H, Schwodiauer R, Reichl W, Runck J. F2-laser patterning of GaPO4 resonators for humidity sensing. Appl Phys A. 2005;80:1401–1404.Google Scholar
  72. 72.
    Lakin KM. Thin film resonators and filters. IEEE Ultrasonics Symposium. 1999;895–906.Google Scholar
  73. 73.
    Lakin KM. A review of thin-film resonator technology. IEEE Microw Mag. 2003; 4:61–67.Google Scholar
  74. 74.
    Lakin KM. Thin film resonator technology. IEEE Trans Ultrason Ferr. 2005;52:707–716.Google Scholar
  75. 75.
    Penza M, Cassano G, Aversa P, Suriano D, Verona E, Benetti M et al. Thin film bulk acoustic resonator vapor sensors with single-walled carbon nanotubes-based nanocomposite layer. Proceedings of the 2007 IEEE Sensors Conference. 2007.Google Scholar
  76. 76.
    Newell WE. Face-mounted piezoelectric resonators. Proc IEEE. 1965;53:575–581.Google Scholar
  77. 77.
    Lostis P. The study, production and control of thin films giving a chosen path difference between perpendicularly polarized components. Rev Opt Theor Instr. 1959;38:1.Google Scholar
  78. 78.
    Benetti M, Cannata D, Di Pietrantonio F, Foglietti V, Verona E. Microbalance chemical sensor based on thin-film bulk acoustic wave resonators. Appl Phys Lett. 2005;87:173504.Google Scholar
  79. 79.
    Gizeli E. Acoustic transducers. In: E. Gizeli, C.R. Lowe editors. Biomolecular Sensors. London, UK: Taylor & Francis; 2002.Google Scholar
  80. 80.
    Rey-Mermet S, Lanz R, Muralt P. Bulk acoustic wave resonator operating at 8 GHz for gravimetric sensing of organic films. Sens Actuators B. 2006;114:681–686.Google Scholar
  81. 81.
    Zhang H, Kim ES, Micromachined acoustic resonant mass sensor. J Microelectromech Syst. 2005;14:699–706.Google Scholar
  82. 82.
    O'Toole RP, Burns SG, Bastiaans GJ, Porter MD. Thin aluminum nitride film resonators – miniaturized high-sensitivity mass sensors. Anal Chem. 1992;64:1289–1294.Google Scholar
  83. 83.
    Gabl R, Green E, Schreiter M, Feucht HD, Zeininger H, Primig R et al. Novel integrated FBAR sensors: A universal technology platform for Bio- and Gas-Detection. Proceedings of the 2003 IEEE Sensors Conference. 2003;1184–1188.Google Scholar
  84. 84.
    Reichl W, Runck J, Schreiter M, Greert E, Gabl R. Novel gas sensors based on thin film bulk acoustic resonators. Proceedings of the 2004 IEEE Sensors Conference. 2004;1504–1505.Google Scholar
  85. 85.
    Benetti M, Cannata D, D'Amico A, Di Pietrantonio F, Foglietti V, Verona E. Thin Film Bulk Acoustic Wave Resonator (TFBAR) gas sensor. Proceeding of the IEEE Ultrasonics Symposium. 2004;1581–1584;Google Scholar
  86. 86.
    Lee H-M, Kim H-T, Choi H-K, Lee H-C, Hong H-K, Lee D-H et al. A highly-sensitive differential-mode microchemical sensor using TFBARs with on-chip microheater for Volatile Organic Compound (VOC) detection. Proceeding on the IEEE International Conference on Micro Electro Mechanical Systems, Istanbul, Turkey; 2006. pp. 490–493.Google Scholar
  87. 87.
    Zhang H, Kim ES. Vapor and liquid mass sensing by micromachined acoustic resonator. Proceeding of the 16th Annual IEEE International Conference on Micro Electro Mechanical Systems – MEMS-03, Kyoto, Japan; 2003. pp. 470–473.Google Scholar
  88. 88.
    White RM, Voltmer FW. Direct piezoelectric coupling to surface elastic waves. Appl Phys Lett. 1965;12:314.Google Scholar
  89. 89.
    Harding GL, Du J. Design and properties of quartz-based love wave acoustic sensors incorporating silicon dioxide and PMMA guiding layers. Smart Mater Struct. 1997;6:716–720.Google Scholar
  90. 90.
    Du J, Harding GL, Ogilvy JA, Dencher PR, Lake M. A study of love-wave acoustic sensors. Sens Actuators A. 1996;56:211–219.Google Scholar
  91. 91.
    Kovacs G, Vellekoop MJ, Haueis R, Lubking GW, Venema A. A love wave sensor for (Bio)Chemical Sensing in Liquids. Sens Actuator A-Phys. 1994;43:38–43.Google Scholar
  92. 92.
    Morgan DP. A history of surface acoustic wave devices. In: CCW Ruppel, TA Fjeldly, editors. Advances in surface acoustic wave technology, systems and applications. Singapore: World Scientific Publishing; 2000.Google Scholar
  93. 93.
    Thompson M, Stone DC. Surface-launched acoustic wave sensors. chemical sensing and thin-film characterization. In: JDWinefordner, editor. Chemical Analysis: A Series of Monographs on Analytical Chemistry and its Applications, New York, USA: John Wiley & Sons; 1997.Google Scholar
  94. 94.
    Adler EL. SAW and pseudo-SAW properties using matrix-methods. IEEE Trans Ultrason Ferr. 1994;41:876–882.Google Scholar
  95. 95.
    Powell DA, Kalantar-zadeh K, Wlodarski W. Numerical calculation of SAW sensitivity: Application to ZnO/LiTaO3 transducers. Sens Actuators A. 2004;115:456–461.Google Scholar
  96. 96.
    Powell DA. PhD Thesis: Modelling of Layered Surface Acoustic Wave Resonators for Liquid Media Sensing Applications, Melbourne, Australia: RMIT University;2006.Google Scholar
  97. 97.
    Ippolito SJ, Kalantar-Zadeh K, Powell DA, Wlodarski W. A 3-Dimensional finite element approach for simulating acoustic wave propagation in layered SAW devices. Proceedings of the IEEE Symposium on Ultrasonics, 2003;303–306.Google Scholar
  98. 98.
    Caron JJ, Andle JC, Vetelino JF. Surface acoustic wave substrates for high temperature applications. Proceedings of the IEEE Frequency Control Symposium. 1996;222–227.Google Scholar
  99. 99.
    Caron JJ, Andle JC, Vetelino JF. Surface acoustic wave substrates for gas sensing applications. Proceedings of the IEEE Ultrasonics Symposium, 1995;461–466.Google Scholar
  100. 100.
    Slobodnik Jr AJ. Materials and Their Influence on Performance. In: AA Oliner, editor. Acoustic Surface Waves, Berlin, Germany: Springer-Verlag; 1978.Google Scholar
  101. 101.
    Slobodnik Jr AJ, Conway ED, Delmonico RT. Volume 1A. Surface wave velocities. In: Microwave Acoustic Handbook, National Technical Information Service, US Dept of Commerce. 1973.Google Scholar
  102. 102.
    Hickernell FS. Thin films for SAW devices. In: CCW Ruppel, TA Fjeldly, editors. Advances in Surface Acoustic Wave Technology, Systems and Applications, Singapore: World Scientific Publishing; 2000.Google Scholar
  103. 103.
    Galipeau DW, Story PR, Vetelino KA, Mileham RD. Surface acoustic wave microsensors and applications. Smart Mater Struct. 1997;6:658–667.Google Scholar
  104. 104.
    Rugemer A, Reiss S, Geyer A, von Schickfus M, Hunklinger S. Surface acoustic wave NO2 sensing using attenuation as the measured quantity. Sens Actuators B. 1999;56:45–49.Google Scholar
  105. 105.
    Becker H, vonSchickfus M. Hunklinger S. A new sensor principle based on the reflection of surface acoustic waves. Sens Actuators A. 1996;54:618–621.Google Scholar
  106. 106.
    Martin SJ, Ricco AJ. Effective utilization of acoustic wave sensor responses: Simultaneous measurement of velocity and attenuation. Proceedings of the IEEE Ultrasonics Symposium, 1989;621–625.Google Scholar
  107. 107.
    Jakubik WP, Urbanczyk MW, Bodzenta J, Pietrzyk MA. Investigations on the resistance of the metal-free phthalocyanine and palladium bilayer sensor structure influenced by hydrogen. Sens Actuators B. 2005;105:340–345.Google Scholar
  108. 108.
    Jakubik WP, Urbanczyk MW, Kochowski S, Bodzenta J. Palladium and phthalocyanine bilayer films for hydrogen detection in a surface acoustic wave sensor system. Sens Actuators B. 2003;96:321–328.Google Scholar
  109. 109.
    Jakubik WP, Urbanczyk MW, Kochowski S, Bodzenta J. Bilayer structure for hydrogen detection in a surface acoustic wave sensor system. Sens Actuators B. 2002;82:265–271.Google Scholar
  110. 110.
    Ippolito SJ, Kandasamy S, Kalantar-Zadeh K, Wlodarski W. Layered SAW hydrogen sensor with modified tungsten trioxide selective layer. Sens Actuators B. 2005;108: 553–557.Google Scholar
  111. 111.
    Ippolito SJ, Kandasamy S, Kalantar-Zadeh K, Trinchi A, Wlodarski W. A layered surface acoustic wave ZnO/LiTaO3 structure with a WO3 selective layer for hydrogen sensing. Sens Lett. 2003;1:33–36.Google Scholar
  112. 112.
    Ippolito SJ, Kandasamy S, Kalantar-Zadeh K, Wlodarski W, Galatsis K, Kiriakidis G et al. Highly sensitive layered ZnO/LiNbO3 SAW device with InOx selective layer for NO2 and H2 gas sensing. Sens Actuators B. 2005;111:207–212.Google Scholar
  113. 113.
    Ippolito SJ, Kalantar-Zadeh K, Trinchi A, Wlodarski W, Tobar M. Layered SAW nitrogen dioxide sensor based on a ZnO/36°YX LiTaO3 structure with WO3 selective layer. Proceedings of the 2003 IEEE International Frequency Control Sympposium. 2003;931–934.Google Scholar
  114. 114.
    Ippolito SJ, Kalantar-Zadeh K, Wlodarski W, Galatsis K, Fischer WJ, Berger O et al. A layered SAW based NO2 sensor with a copper phthalocyanine selective layer. Proceedings of the Conference on Optoelectronic and Microelectronic Materials and Devices. 2002;165–168.Google Scholar
  115. 115.
    Ippolito SJ, Ponzoni A, Kalantar-zadeh K, Wlodarski W, Comini E, Faglia G et al. Ethanol sensor based on layered WO3/ZnO/36°YX LiTaO3 SAW devices. Proceedings of TRANSDUCERS '05. 2005;1915–1918.Google Scholar
  116. 116.
    Benes E, Groschl M, Seifert F and Pohl A. Comparison between BAW and SAW sensor principles. IEEE Trans Ultrason. 1998;45:1314–1330.Google Scholar
  117. 117.
    Wang Z, Cheeke JDN, Jen CK. Perturbation method for analyzing mass sensitivity of planar multilayer acoustic sensors. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 1996;43:844–851.Google Scholar
  118. 118.
    D'Amico A, Palma A, Verona E. Surface acoustic-wave hydrogen sensor. Sens Actuators. 1982;3:31–39.Google Scholar
  119. 119.
    Wohltjen H, Ballantine DS, Jarvis NL. Vapor detection with surface acoustic-wave microsensors. ACS Symposium Series. 1989;403:157–175.Google Scholar
  120. 120.
    Haskell RLB, Caron JJ, Duptisea MA, Ouellette JJ, Vetelino JF. Effects of film thickness on sensitivity of SAW mercury sensors. Proceedings of the IEEE Ultrasonics Symposium. 1999;429–434.Google Scholar
  121. 121.
    Grate JW, Klusty M, McGill RA, Abraham MH, Whiting G, Andonianhaftvan J. The predominant role of swelling-induced modulus changes of the sorbent phase in determining the responses of polymer-coated surface acoustic-wave vapor sensors. Anal Chem. 1992;64:610–624.Google Scholar
  122. 122.
    Martin SJ, Frye GC, Senturia SD. Dynamics and response of polymer-coated surface-acoustic-wave devices – effect of viscoelastic properties and film resonance. Anal Chem. 1994;66:2201–2219.Google Scholar
  123. 123.
    Ricco AJ, Martin SJ, Zipperian TE. Surface acoustic-wave gas sensor based on film conductivity changes. Sens Actuators. 1985;8:319–333.Google Scholar
  124. 124.
    Kalantar-zadeh K, Powell DA, Ippolito S, Wlodarski W. Study of layered SAW devices operating at different modes for gas sensing applications. Proceeding of the IEEE Ultrasonics Symposium, 2004;191–194.Google Scholar
  125. 125.
    Blotekjær K, Ingebrig Ka, Skeie H. Method for analyzing waves in structures consisting of metal strips on dispersive media. IEEE Trans Electron Devices ED. 1973;20:1133–1138.Google Scholar
  126. 126.
    Powell DA, Kalantar-zadeh K, Ippolito S, Wlodarski W. Comparison of conductometric gas sensitivity of surface acoustic wave modes in layered structures. Sens Lett. 2005;3:66–70.Google Scholar
  127. 127.
    Wohltjen H, Dessy R. Surface acoustic-wave probes for chemical-analysis. 2. Gas-Chromatography Detector. Anal Chem. 1979;51:1465–1470.Google Scholar
  128. 128.
    D'Amico A, Palma A, Verona E. Hydrogen sensor using a palladium coated surface acoustic wave delay-line. Proceedings of the IEEE Ultrasonics Symposium. 1982;308–311.Google Scholar
  129. 129.
    Nieuwenhuizen MS, Nederlof AJ. A saw gas sensor for carbon-dioxide and water – preliminary experiments. Sens Actuators B. 1990;2:97–101.Google Scholar
  130. 130.
    Galipeau JD, Falconer RS, Vetelino JF, Caron JJ, Wittman EL, Schweyer MG et al. Theory, design and operation of a surface-acoustic-wave hydrogen-sulfide microsensor. Sens Actuators B. 1995;24:49–53.Google Scholar
  131. 131.
    Penza M, Vasanelli L. SAW NOx gas sensor using WO3 thin-film sensitive coating. Sens Actuators B. 1997;41:31–36.Google Scholar
  132. 132.
    Rapp M, Stanzel R, Vonschickfus M, Hunklinger S, Fuchs H, Schrepp W et al. Gas-detection in the ppb-range with a high-frequency, high-sensitivity surface acoustic-wave device. Thin Solid Films. 1992;210:474–476.Google Scholar
  133. 133.
    Rebiere D, Dejous C, Pistre J, Lipskier JF, Planade R. Synthesis and evaluation of fluoropolyol isomers as SAW microsensor coatings: Role of humidity and temperature. Sens Actuators B. 1998;49:139–145.Google Scholar
  134. 134.
    Wohltjen H. Mechanism of operation and design considerations for surface acoustic-wave device vapor sensors. Sens Actuators. 1984;5:307–325.Google Scholar
  135. 135.
    Jakoby B, Ismail GM, Byfield MP, Vellekoop MJ. A novel molecularly imprinted thin film applied to a love wave gas sensor. Sens Actuator A-Phys. 1999;76:93–97.Google Scholar
  136. 136.
    Zimmermann C, Rebiere D, Dejous C, Pistre J, Chastaing E, Planade R. A love-wave gas sensor coated with functionalized polysiloxane for sensing organophosphorus compounds. Sens Actuators B. 2001;76:86–94.Google Scholar
  137. 137.
    Penza M, Antolini F, Antisari MV. Carbon nanotubes as SAW chemical sensors materials. Sens Actuators B. 2004;100:47–59.Google Scholar
  138. 138.
    Penza M, Aversa P, Cassano G, Wlodarski W, Kalantar-Zadeh K. Layered SAW gas sensor with single-walled carbon nanotube-based nanocomposite coating. Sens Actuators B. 2007;127:168–178.Google Scholar
  139. 139.
    Kalantar-Zadeh K, Trinchi A, Wlodarski W, Holland A. A novel love-mode device based on a ZnO/ST-Cut quartz crystal structure for sensing applications. Sens Actuators A. 2002;100:135–143.Google Scholar
  140. 140.
    Nieuwenhuizen MS, Nederlof AJ. A silicon-based SAW chemical sensor for NO2 by applying a silicon-nitride passivation layer. Sens Actuators B. 1992;9:171–176.Google Scholar
  141. 141.
    Caron JJ, Kenny TD, LeGore LJ, Libby DG, Freeman CJ, Vetelino JF. A surface acoustic wave nitric oxide sensor. Proceedings of the IEEE Frequency Control Symposium. 1997;156–162.Google Scholar
  142. 142.
    Martin SJ, Frye GC, Spates JJ, Butler MA. Gas sensing with acoustic devices. Proceedings of the IEEE Ultrasonics Symposium. 1996;423–434.Google Scholar
  143. 143.
    Vellekoop MJ. Acoustic wave sensors and their technology. Ultrasonics. 1998;36:7–14.Google Scholar
  144. 144.
    Drafts B. Acoustic wave technology sensors. IEEE Trans Microw Theory. 2001;49:795–802.Google Scholar
  145. 145.
    Lec R, Vetelino JF, Falconer RS, Xu A. Macroscopic theory of surface acoustic wave gas microsensors. Proceedings of the IEEE Ultrasonics Symposium. 1988;581:585–589.Google Scholar
  146. 146.
    Holcroft B, Roberts GG. Surface acoustic-wave sensors incorporating langmuir-blodgett films. Thin Solid Films. 1988;160:445–452.Google Scholar
  147. 147.
    Jakubik W, Urbanczyk M, Opilski A. Sensor properties of lead phthalocyanine in a surface acoustic wave system. Ultrasonics. 2001;39:227–232.Google Scholar
  148. 148.
    Caron JJ, Haskell RB, Benoit P, Vetelino JF. A surface acoustic wave mercury vapor sensor. IEEE Trans Ultrason Ferr. 1998;45:1393–1398.Google Scholar
  149. 149.
    Galipeau JD, LeGore LJ, Snow K, Caron JJ, Vetelino JF, Andle JC. The integration of a chemiresistive film overlay with a surface acoustic wave microsensor. Sens Actuators B. 1996;35:158–163.Google Scholar
  150. 150.
    Thiele JA, Pereira da Cunha M. High temperature LGS SAW devices with Pt/WO3 and Pd sensing films. Proceedings of the IEEE Ultrasonics Symposium, 2003;1752: 1750–1753.Google Scholar
  151. 151.
    Kalantar-zadeh K, Li YX, Wlodarski W. Brennan F. A layered structure surface acoustic wave for oxygen sensing. Proceedings of the Conference on Optoelectronic and Microelectronic Materials and Devices, 2000;202–205Google Scholar
  152. 152.
    Kalantar-zadeh K, Trinchi A, Wlodarski W, Holland A, Atashbar MZ. A novel love mode device with nanocrystalline ZnO film for gas sensing applications. Proceedings of the IEEE Nanotechnology Conference. 2001;556–561.Google Scholar
  153. 153.
    Penza M, Tagliente MA, Aversa P, Re M, Cassano G. The effect of purification of single-walled carbon nanotube bundles on the alcohol sensitivity of nanocomposite langmuir-blodgett films for SAW sensing applications. Nanotechnology. 2007;18: 185502 (12 pp).Google Scholar
  154. 154.
    Du J, Harding GL. A multilayer structure for love-mode acoustic sensors. Sens Actuators A. 1998;65:152–159.Google Scholar
  155. 155.
    Harding GL. Mass sensitivity of love-mode acoustic sensors incorporating silicon dioxide and silicon-oxy-fluoride guiding layers. Sens Actuators A. 2001;88:20–28.Google Scholar
  156. 156.
    Chang RC, Chu SY, Hong CS, Chuang YT. A study of love wave devices in ZnO/Quartz and ZnO/LiTaO3 structures. Thin Solid Films. 2006;498:146–151.Google Scholar
  157. 157.
    Chang RC, Chu SY, Hong CS, Chuang YT. An investigation of preferred orientation of doped ZnO films on the 36º YX-LiTaO3 substrates and fabrications of love-mode devices. Surf Coat Technol. 2006;200:3235–3240.Google Scholar
  158. 158.
    Sauberlich R, Petter P, Bu W, Wall B, Nindel N. Method and device for the concentration of mercury in gases. Deutsche Demokratische Republik Patent. 1989;No: 00268530A1.Google Scholar
  159. 159.
    Caron JJ, Haskell RB, Libby DG, Freeman CJ, Vetelino JF. A surface acoustic wave mercury vapor sensor. Proceedings of the IEEE Frequency Control Symposium. 1997; 133–139.Google Scholar
  160. 160.
    Ricco AJ, Crooks RM, Osbourn GC. Surface acoustic wave chemical sensor arrays: New chemically sensitive interfaces combined with novel cluster analysis to detect volatile organic compounds and mixtures. Accounts Chem Res. 1998;31:289–296.Google Scholar
  161. 161.
    Lu CJ, Zellers ET. A dual-adsorbent preconcentrator for a portable indoor-VOC microsensor system. Anal Chem. 2001;73:3449–3457.Google Scholar
  162. 162.
    Ippolito SJ. PhD Thesis: Investigation Of Multilayered Surface Acoustic Wave Devices For Gas Sensing Applications: Employing Piezoelectric Intermediate and Nanocrystalline Metal Oxide Sensitive Layers, Melbourne, Australia: RMIT University; 2006.Google Scholar
  163. 163.
    Sadek AZ, Wlodarski W, Li Y, Yu W, Li X, Yu X et al. A ZnO nanorod based layered ZnO/64° YX LiNbO3 SAW hydrogen gas sensor. Thin Solid Films. 2007;515:8705–8708.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.RMIT UniversityDepartment of Applied ChemistryMelbourneAustralia

Personalised recommendations