Advertisement

Thermometric Gas Sensing

Chapter

The response of all kind of sensors to temperature changes has always to be considered as an important influencing factor of the stability of the reading. The principle of temperature sensing is one of the most reliable transduction methods. Temperature changes can be detected simply, sensitively and reliably, and thereby also rather inexpensively. Although most enabling technologies involve either new materials or material advances, the British MNT Roadmap for gas sensors, published in 2006 [1], considers among the enabling technologies, lower cost temperature measurements as well. Therefore, the field of thermometric gas sensing, which is often called calorimetric gas sensing too, remains the subject of much research and development.

Three main categories of thermometric gas sensing have to be discussed:
  • Catalytic combustion;

  • Thermal conductivity;

  • Adsorption/desorption heat.

Detection of Combustible Gases

Thermometric gas sensing is widely used for the indirect detection of...

Keywords

Porous Silicon Complementary Metal Oxide Semiconductor Electronic Nose Explosive Mixture Lithium Tantalate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    MNT Gas Sensor Forum. MNT Gas Sensor Roadmap. 2006. www.technologyprogramme.org.uk/site/TechnologyReports. Accessed 2006.
  2. 2.
    Institution of Gas Engineers and Managers. Dealing with reported gas escapes, Publication SR/20. 1998. www.igem.org.uk/Technical/publications.asp. Accessed 1998
  3. 3.
    European Standard, EN 50014: Electrical apparatus for potentially explosive atmospheres, General requirements. 1998.Google Scholar
  4. 4.
    European Standard, EN 50018: Electrical apparatus for potentially explosive atmospheres, Flameproof enclosure “d”. 2000.Google Scholar
  5. 5.
    European Standard, EN 50019: Electrical apparatus for potentially explosive atmospheres, Increased safety “e”. 2000.Google Scholar
  6. 6.
    European Standard, EN 50020: Electrical apparatus for potentially explosive atmospheres, Intrinsic safety “i”. 2002.Google Scholar
  7. 7.
    European Standard, EN 50054: Electrical apparatus for the detection and measurements of combustible gases, General requirements and test methods. 1998.Google Scholar
  8. 8.
    Bataillard P, Steffgen E, Haemmerli S, Manz A, Widmer HM. An integrated silicon thermopile as biosensor for the thermal monitoring of glucose, Urea and Penicillin Biosens Bioelectron. 1993;8(2):89–93.CrossRefGoogle Scholar
  9. 9.
    Crowcon Detection Instruments. Gas Detection, Gas Monitoring, Gas Sampling. 2007. www.crowcon.com. Accessed 2007.
  10. 10.
    Pollackdiener G, Obermeier E. Heat-conduction microsensor based on silicon technology for the analysis of 2-component and 3-component gas-mixtures. Sens Actuators B. 1993;13:345–347.CrossRefGoogle Scholar
  11. 11.
    Hagleitner C, Hierleman A, Lange D, Kummer A, Kerness N, Brand O, Baltes H. Smart single-chip gas sensor microsystem. Nature. 2001;414:293–296.CrossRefGoogle Scholar
  12. 12.
    Gall M. Si planar pellistor. A low-power pellistor sensor in Si thin-film technology. Sensors and Actuators, B: Chem. 1993;B4(3–4):533–538.Google Scholar
  13. 13.
    Krebs P, Grisel A. Low power integrated catalytic gas sensor. Sensors and Actuators, B: Chem. 1993;B13(1–3 pt 1):155–158.CrossRefGoogle Scholar
  14. 14.
    Microsens SA. Integrated resistive gas sensors. 2007. www.microsens.ch/products/gas.htm. Accessed 2007.
  15. 15.
    Alphasense. Alphasense Sensor Data Sheets. 2007. www.alphasense.com. Accessed 2007
  16. 16.
    Kulinyi S, Brandszájsz D, Amine H, Ádám M, Fürjes P, Bársony I, Dücsõ Cs. Olfactory detection of methane, propane, butane and hexane using conventional transmitter norms. Sensors and Actuators, B: Chem. 2005;111–112 (SUPPL.):286–292.Google Scholar
  17. 17.
    Dücsõ Cs, Vázsonyi E, Ádám M, Szabó I, van den Berg A, Bársony I. Porous silicon bulk micromachining for thermally isolated membrane formation. Sens Actuators A. 1997;60: 228–234.CrossRefGoogle Scholar
  18. 18.
    Dücsõ Cs, Ádám M, Fürjes P, Hirschfelder M, Kulinyi S, Bársony I. Explosion-proof monitoring of hydrocarbons by micropellistor. Sens Actuators B. 2003;95:188–193.CrossRefGoogle Scholar
  19. 19.
    Bársony I, Fürjes P, ádám M, Dücsõ Cs, Vízváry Zs, Zettner J, Stam F. Thermal response of microfilament heaters in gas sensing, Sensors and Actuators, B: Chem. 2004;103(1–2): 442–447.CrossRefGoogle Scholar
  20. 20.
    Kaltsas G, Nassiopoulou A. Bulk silicon micromachining using porous silicon sacrificial layer. Microelectron. Eng. 1997;35:397–400.CrossRefGoogle Scholar
  21. 21.
    Cavicchi RE, Poirier GE, Tea NH, Afridi M, Berning D, Hefner A, Suehle J, Montgomery C. Micro-differential scanning calorimeter for combustible gas sensing. Sensors and Actuators, B: Chem. 2004;97(1):22–30CrossRefGoogle Scholar
  22. 22.
    US Patent 6,079,873. Micron-scale differential scanning calorimeter on chip.Google Scholar
  23. 23.
    Aigner R, Dietl M, Katterloher R, Klee V. Si-planar-pellistor: Designs for temperature modulated operation. Sensors and Actuators, B: Chem. 1996;33(1–3):151–155.CrossRefGoogle Scholar
  24. 24.
    Lee SM, Dyer DC, Gardner JW. Design and optimisation of a high-temperature silicon micro-hotplate for nanoporous palladium pellistors. Microelectron J. 2003;34(2):115–126.CrossRefGoogle Scholar
  25. 25.
    Puigcorbe J, Vila A, Cerda J, Cirera A, Gracia J, Cane C, Morante JR. Thermo-mechanical analysis of micro-drop coated gas sensors. Sens Actuat A: Phys. 2002;97–98:379–385.CrossRefGoogle Scholar
  26. 26.
    Kovalgin AY, Holleman J, Iordache G, Jenneboer T, Falke F, Zieren V, Goossens MJ. Low-power, antifuse-based silicon chemical sensor on a suspended membrane. J. Electrochem Soc. 2006;153(9):H181–H188.CrossRefGoogle Scholar
  27. 27.
    Gall M. Si-Planar-Pellistor array, a detection unit for combustible gases. Sensors and Actuators, B: Chem. 1993;B16(1–3 pt 2):260–264.CrossRefGoogle Scholar
  28. 28.
    Sommer V, Tobias P, Kohl D. Methane and butane concentrations in a mixture with air determined by microcalorimetric sensors and neural networks. Sensors and Actuators B: Chem. 1993;12:147–152.CrossRefGoogle Scholar
  29. 29.
    Westa-T Ltd. Gas sensing and warning equipments for combustible and nosy gases. 2007. www.weszta-t.hu. Accessed 2007.
  30. 30.
    Debeda H, Rebiere D, Pistre J, Menil F. Thick film pellistor array with a neural network post-treatment. Sens Actuat B: Chem. 1995;B27(1–3 pt 2: 297–300.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Research Institute for Technical Physics and Materials Science – MFAHungarian Academy of SciencesHungary

Personalised recommendations