Skip to main content

Optical Gas Sensing

  • Chapter
  • First Online:
Solid State Gas Sensing

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Demtröder W. Laser Spectroscopy, Basic Concepts and Instrumentation. Berlin: Springer-Verlag; 1996.

    Google Scholar 

  2. Menzel R. Photonics Linear and Nonlinear Interactions of Laser Light and Matter. Berlin: Springer-Verlag; 2001.

    Google Scholar 

  3. Mukamel S. Principles of Nonlinear Optical Spectroscopy. New York: Oxford University Press; 1999.

    Google Scholar 

  4. Tkachenko NV. Optical spectroscopy: methods and instrumentations. Amsterdam: Elsevier; 2006.

    Google Scholar 

  5. Abramczyk H. Introduction to laser spectroscopy. Amsterdam: Elsevier; 2005.

    Google Scholar 

  6. Sigrist MW. Editor, Air Monitoring by Spectroscopic Techniques. Somerset N.J: John Wiley & Sons; 1994.

    Google Scholar 

  7. Wenz H, Demtröder W, Flaud J. Highly sensitive absorption spectroscopy of the ozone molecule around 1.5 μm. J Mol Spectrosc. 2001:209:267–277.

    Article  CAS  Google Scholar 

  8. Corsi C, Inguscio M. High sensitivity trace gas monitoring using semiconductor diode lasers. In: S Martellucci et al. editors. Optical Sensors and Microsystems: New Concepts, Materials, Technologies. New York: Kluwer Academic/Plenum Press; 2000.

    Google Scholar 

  9. Pavone FS, Inguscio M. Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser. Appl Phys B. 1993;56:118–122.

    Article  Google Scholar 

  10. Herriott DR, Kogelnik H, Kompfner R. Off-axis paths in spherical mirror interferometers. Appl Opt. 1964;3:523–526.

    Article  Google Scholar 

  11. McManus JB, Kebabian PL, Zahniser MS. Astigmatic mirror multipass absorption cells for long-path-length spectroscopy. App Opt. 1995;34:3336–3348.

    Article  CAS  Google Scholar 

  12. Seiter M, Sigrist MW. Trace-gas sensor based on mid-IR difference-frequency generation in PPLN with saturated output power. Infrared Phys Technol. 2000;41:259–269.

    Article  CAS  Google Scholar 

  13. Toci G, Mazzinghi P, Miele B, Stefanutti L. An airborne diode laser spectrometer for the simultaneous measurement of H2O and HNO3 content of the stratospheric cirrus clouds. Optics and Laser Eng. 2002;37:459–480.

    Article  Google Scholar 

  14. Werle PW, Mazzinghi P, D’Amato F, De Rosa M, Maurer K, Slemr F. Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy. Spectrochim Acta Mol Biomol Spectros. 2004;60:1685–1705.

    Article  CAS  Google Scholar 

  15. Kasyutich VL, Martin PA. Multipass optical cell based upon two cylindrical mirrors for tunable diode laser absorption spectroscopy. Appl Phys B. 2007;88:125–130.

    Article  CAS  Google Scholar 

  16. Sigrist MW. Air Monitoring by Laser Photoacoustic Spectroscopy. In Ref. [6], 1994.

    Google Scholar 

  17. Nägele M, Sigrist MW. Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas sensing. Appl Phys B. 2000;70:895–901.

    Google Scholar 

  18. Song K, Oh S, Jung EC, Kim D, Cha H. Application of laser photoacoustic spectroscopy for the detection of water vapor near 1.38 μm. Microchem J. 2005;80:113–119.

    Article  CAS  Google Scholar 

  19. Rey JM, Marinov D, Vogler DE, Sigrist MW. Investigation and optimisation of a multipass resonant photoacoustic cell at high absorption levels. Appl Phys B. 2005;80: 261–266.

    Article  CAS  Google Scholar 

  20. Faist J, Capasso F, Sivco DL, Sirtori C, Hutchinson AL, Cho AY. Quantum cascade laser. Science. 1994;264:553–556.

    Article  CAS  Google Scholar 

  21. Elia A, Di Franco C, Lugarà PM, Scamarcio G. Photoacoustic spectroscopy with quantum cascade lasers for trace gas detection. Sensors. 2006;6:1411–1419.

    Article  CAS  Google Scholar 

  22. Grossel A, Zéninari V, Joly L, Parvitte B, Durry G, Courtois D. Photoacoustic detection of nitric oxide with a Helmholtz resonant quantum cascade laser sensor. Infrared Phys Techn. 2007;51:95–101.

    Article  CAS  Google Scholar 

  23. Lendl B, Ritter W, Harasek M, Niessner R, Haisch C. Photoacoustic monitoring of CO2 in biogas matrix using a quantum cascade laser. Proc 5th IEEE Conf On Sensors. 2007; 338–341. doi: 10.1109/ICSENS.2007.355475.

    Google Scholar 

  24. Grossel A, Zéninari V, Parvitte B, Joly L, Courtois D. Optimization of a compact photoacoustic quantum cascade laser spectrometer for atmospheric flux measurements: application to the detection of methane and nitrous oxide. Appl Phys B: Laser and Optics. 2007;88:483–492.

    Article  CAS  Google Scholar 

  25. O'Keefe A, Deacon DAG. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources. Rev Sci Instrum. 1998;59:2544–2551.

    Article  Google Scholar 

  26. Engeln R, Berden G, Peeters R, Meijer G. Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy. Rev Sci Instrum. 1998;69:3763–3769.

    Article  CAS  Google Scholar 

  27. Leleux D, Claps R, Englich FV, Tittel FK. Novel laser-based gas sensors for trace gas detection in a spacecraft habitat. Proc. of Bioastronautics Investigators' Workshop, Galveston, Texas. 2001.

    Google Scholar 

  28. Podobedov VB, Plusquellic DF, Fraser GT. Investigation of the water-vapor continuum in the THz region using a multipass cell. J Quant Spectrosc Radiat Transf. 2005;91: 287–295.

    Article  CAS  Google Scholar 

  29. Mazzotti D, Giusfredi G, Cancio P, De Natale P. High-sensitivity spectroscopy of CO2 around 4.25 μm with difference-frequency radiation. Optic Laser Eng. 2002;37: 143–158.

    Article  Google Scholar 

  30. Nikolaev IV, Ochkin VN, Spiridonov MV, Tskhai SN. Diode ring-down spectroscopy without intensity modulation in an off-axis multipass cavity. Spectrochim Acta Mol Biomol Spectros. 2007;66:832–835.

    Article  CAS  Google Scholar 

  31. Nadezhdinskii A, Berezin A, Chernin S, Ershov O, Kutnyak V. High sensitivity methane analyser based on tuned near infrared diode laser. Spectrochim. Acta Mol Biomol Spectros. 1999;55:2083–2089.

    Article  Google Scholar 

  32. Waechter H, Sigrist MW. Mid-infrared laser spectroscopic determination of isotope ratios of N2O at trace levels using wavelength modulation and balanced path length detection. Appl Phys B. 2007;87:539–546.

    Article  CAS  Google Scholar 

  33. Manne J, Sukhorukov O, Jäger W, Tulip J. Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath. Appl Opt. 2006;45: 9230–9237.

    Article  Google Scholar 

  34. Azzam RMA, Bashara NM. Ellipsometry and Polarized Light. North-Holland, Amsterdam; 1977.

    Google Scholar 

  35. Zangooie S, Bjorklund R, Arwin H. Vapor sensitivity of thin porous silicon layers. Sensor Actuator B Chem. 1997;43:168–174.

    Article  Google Scholar 

  36. Wang G, Arwin H. Modification of vapor sensitivity in ellipsometric gas sensing by copper deposition in porous silicon. Sensor Actuator B Chem. 2002;85:95–103.

    Article  Google Scholar 

  37. Wang G, Arwin H, Jansson R. An optical gas sensor based on ellipsometric readout. IEEE Sensor J. 2003;3:739–743.

    Article  CAS  Google Scholar 

  38. Zangooie S, Bjorklund R, Arwin H. Water interaction with thermally oxidized porous layers. J Electrochem Soc. 1997;144:4027–4035.

    Article  CAS  Google Scholar 

  39. Ritchie RH. Plasma losses by fast electrons in thin films. Phys Rev. 1957;106:874–881.

    Article  CAS  Google Scholar 

  40. Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z Physik. 1968;216:398–410.

    Article  CAS  Google Scholar 

  41. Kretschmann E, Raether H. Radiative decay of non-radiative surface plasmon excited by light. Z Naturforsch. 1968;23:2135–2136.

    CAS  Google Scholar 

  42. Zhang HQ, Boussaad S, Tao NJ. High-performance differential surface plasmon resonance sensor using quadrant cell photodetector. Rev Sci Instrum. 2003;74:150–153.

    Article  CAS  Google Scholar 

  43. Homola J, Yee SS, Gauglitz G. Surface plasmon resonance sensors: review. Sensor Actuator B Chem. 1999;54:3–15.

    Article  Google Scholar 

  44. Ince R, Narayanaswamy R. Analysis of the performance of interferometry, surface plasmon resonance, and luminescence as biosensors and chemosensors. Anal Chim Acta. 2006;569:1–20.

    Article  CAS  Google Scholar 

  45. Conoci S, Palumbo M, Pignataro B, Rella R, Valli L, Vasapollo G. Optical recognition of organic vapours through ultrathin calix[4]pyrrole films. Colloid Surface Physicochem Eng Aspect. 2002;198–200:869–873.

    Article  Google Scholar 

  46. Kato K, Dooling CM, Shinbo K, Richardson TH, Kaneko F, Tregonning R, Vysotsky MO, Hunter CA. Surface plasmon resonance properties and gas response in porphyrin Langmuir-Blodgett films. Colloid Surface Physicochem Eng Aspect. 2002;198–200: 811–816.

    Article  Google Scholar 

  47. Manera MG, Leo G, Curri ML, Cozzoli PD, Rella R, Siciliano P, Agostiano A, Vasanelli L. Investigation on alcohol vapours/TiO2 nanocrystal thin films interaction by SPR technique for sensing application. Sensors and Actuators B Chem. 2004;100:75–80.

    Article  CAS  Google Scholar 

  48. Manera MG, Cozzoli PD, Curri ML, Leo G, Rella R, Agostiano A, Vasanelli L. TiO2 nanocrystal films for sensing applications based on surface plasmon resonance. Synthetic Met. 2005;148:25–29.

    Article  CAS  Google Scholar 

  49. Story PR, Galipeau DW, Mileham RD. A study of low cost sensors for measuring low relative humidity. Sensor Actuator B Chem. 1995;25:681–685.

    Article  Google Scholar 

  50. Gu L, Huang QQ, Quin M. A novel capacitive-type humidity sensor using CMOS fabrication technology. Sensor Actuator B Chem. 2004;99:491–498.

    Article  CAS  Google Scholar 

  51. Podgersek RP, Franke H, Feger C. Selective optical detection of n-heptane/iso-octane vapors by polyimide lightguides. Opt Lett. 1995;20:501–503.

    Article  Google Scholar 

  52. Manera MG, De Julián Fernández C, Maggioni G, Mattei G, Carturan S, Quaranta A, Della Mea G, Rella R, Vasanelli L, Mazzoldi P. Surface plasmon resonance study on the optical sensing properties of nanometric polyimide film to volatile organic vapors. Sensor Actuator B Chem. 2007;120:712–718.

    Article  CAS  Google Scholar 

  53. Muñoz Aguirre N, Martínez Pérez L, Colín JA, Buenrostro-Gonzalez E. Development of a Surface Plasmon Resonance n-dodecane vapor sensor. Sensors. 2007;7:1954–1961.

    Article  Google Scholar 

  54. Hu WP, Chen SJ, Huang KY, Hsu JH, Chen WY, Chang GL, Lai KA. A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film. Biosens. and Bioelectron. 2004;19:1465–1471.

    Article  CAS  Google Scholar 

  55. Manera MG, Cozzoli PD, Curri ML, Leo G, Rella R, Agostano A, Vasanelli L. TiO2 nanocrystal films for sensing applications based on surface plasmon resonance. Synthetic Met. 2005;148:25–29.

    Article  CAS  Google Scholar 

  56. Homola J, Koudela I, Yee SS. Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sensor Actuator B Chem. 1996;54:16–24.

    Article  Google Scholar 

  57. Nikitin PI, Anokhin PM, Beloglazov AA. Chemical Sensors Based on Surface Plasmon Resonance in Si Grating Structures. International Conference on Solid-State Sensors and Actuators Transducers. 1997;2:1359–1362.

    CAS  Google Scholar 

  58. Nagamura T, Yamamoto M, Terasawa M, Stiratori K. Highly performance sensing of nitrogen oxides by surface plasmon resonance excited fluorescence of dye-doped deoxyribonucleic acid films. Appl Phys Lett. 2003;83:803–805.

    Article  CAS  Google Scholar 

  59. Challener WA, Ollmann RR, Kam KK. A surface plasmon resonance gas sensor in a ‘compact disc’ format”. Sensor Actuator B Chem. 1999;56:254–258.

    Article  Google Scholar 

  60. Tiefenthaler K, Lukosz W. Integrated optical switches and gas sensors. Opt. Lett. 1984;10:137–139.

    Article  Google Scholar 

  61. Fushen C, Qu L, Yunqi L, Yu X. Integrated optical interferometer gas sensor. Microwave & Opt Techn Lett. 1996;11:213–215.

    Article  Google Scholar 

  62. Chiarini M, Bentini GG, Bianconi M, Cerutti A, Pennestri G, Wang P, She L, Mazzoldi P, Sada C. Integrated Mach-Zehnder micro-interferometer for gas trace remote sensing. Proc. of SPIE. 2006;6031:603106.

    Google Scholar 

  63. Martucci A, Buso D, Guglielmi M, Zbroniec L, Koshizaki N, Post M. Optical gas sensing properties of silica film doped with cobalt oxide nanocrystals. J Sol-Gel Sci Technol. 2004;32:243–246.

    Article  CAS  Google Scholar 

  64. Qi Z-M, Yimit A, Itoh K, Murabayashi M, Matsuda N, Takatsu A, Kato K. Composite optical waveguide composed of a tapered film of bromothymol blue evaporated onto a potassium ion–exchanged waveguide and its application as a guided wave absorption–based ammonia-gas sensor. Opt Lett. 2001:26:629–631.

    Article  CAS  Google Scholar 

  65. Chen X-M, Itoh K, Murabayashi M, Igarashi C. A highly sensitive ammonia gas sensor based on an Ag+/K+ composite ion doped glass optical waveguide system. Chemistry Lett. 1996;26:103–104.

    Article  Google Scholar 

  66. Lambeck PV. Integrated opto-chemical sensors. Sensor Actuator B Chem. 1992;8: 103–116.

    Article  Google Scholar 

  67. Lavers CR, Wilkinson JS. A waveguide-coupled surface-plasmon sensor for acqueous environment. Sensor Actuator B Chem. 1994;22:75–81.

    Article  Google Scholar 

  68. Harris RD, Wilkinson JS. Waveguide surface plasmon resonance sensors. Sensor Actuator B Chem. 1995;29:261–267.

    Article  Google Scholar 

  69. Tobiŝka P, Hugon O, Trouillet A, Gagnaire H. An integrated optic hydrogen sensor based on SPR on palladium. Sensors and Actuators B. 2001;74:168–172.

    Article  Google Scholar 

  70. Jorgenson RC, Yee SS. A fiber-optic chemical sensor based on surface plasmon resonance. Sensor Actuator B Chem. 1993;12:213–220.

    Article  CAS  Google Scholar 

  71. Niggermann M, Katerkamp A, Pellmann M, Bolsmann P, Reinbld J, Cammann K. Remote sensing of tetrachlorethene with a micro-fiber optical gas sensor based on surface plasmon resonance spectroscopy. Sensor Actuator B Chem. 1996;34:328–333.

    Article  Google Scholar 

  72. Abdelghani A, Chevelon JM, Jaffrezic-Renault N, Veilla C, Cagnaire H. Chemical vapour sensing by surface plasmon resonance optical fiber sensor coated with fluoropolymer. Anal Chim Acta. 1997;337:225–232

    Article  CAS  Google Scholar 

  73. Slavik R, Homola J, Čtyroký J. Optical fiber surface plasmon resonance sensor for an acqueous environment. 12th Intl. Conf. on Optical Fiber Sensor, Williamsburg, USA, Tech. Digest Series. 1997;16:436–439

    Google Scholar 

  74. Fontana E, Dulman HD, Doggett DE, Pantell RH. Surface plasmon resonance on a single mode fiber. Instrum. and Meas. Techn. Conf. IMTC/97. IEE Proc. 'Sensing, Processing, Networking' 1997;1:611–616.

    Google Scholar 

  75. Fontana E, Dulman HD, Doggett DE, Pantell RH. Surface plasmon resonance on a single mode optical fiber. IEEE Trans. on Instrumentation and Measurement. 1998;47:168–173.

    Article  Google Scholar 

  76. Sharma AK, Jha R, Gupta BD. Fiber-optic sensors based on Surface Plasmon Resonance: a comprehensive review. IEEE Sensor J. 2007;7:1118–1129.

    Article  Google Scholar 

  77. Zaatar Y, Zaouk D, Bechara J, Khoury A, Llinaress C, Charles JP. Fabrication and characterization of an evanescent wave fiber optic sensor for air pollution control. Mater Sci Eng B: Solid State Mater Adv Technol. 2000;74:296–298.

    Google Scholar 

  78. Tao SQ, Winstead CB, Jindal R, Singh JP. Optical-fiber sensor using tailored porous sol-gel fiber core. IEEE Sensor J. 2004;4:322–328.

    Article  CAS  Google Scholar 

  79. Bürck J, Conzen JP, Beckhaus B, Ache HJ. Fiber-optic evanescent wave sensor for in situ determination of non-polar organic compounds in water. Sensor Actuator B Chem. 1994;18:291–295.

    Article  Google Scholar 

  80. Potyrailo RA, Hobbs SE, Hieftje GM. Near-ultraviolet evanescent-wave absorption sensor based on a multimode optical fiber. Anal Chem. 1998;70:1639–1645.

    Article  CAS  Google Scholar 

  81. Culshaw B. Fiber-optic sensors: application and advances. Optics Photon News. 2005;16:24–29.

    Article  Google Scholar 

  82. Grady T, Butler T, MacCraith B, Diamond D, Mc Kervey MA. Optical Sensor for Gaseous Ammonia With Tuneable Sensitivity. Analyst. 1997;122:803–806.

    Article  CAS  Google Scholar 

  83. Malins C, Landl M, Šimon P, MacCraith BD. Fiber optic ammonia sensing employing novel near infrared dyes. Sensor Actuator B Chem. 1998;51:359–367.

    Article  Google Scholar 

  84. Cao W, Duan Y. Optical fiber-based evanescent ammonia sensor. Sensor Actuator B Chem. 2005;110:252–259.

    Article  CAS  Google Scholar 

  85. El-Sherif M, Bansal L., Yuan J. Fiber optic sensors for detection of toxic and biological threats. Sensors. 2007;7:3100–3118.

    Article  CAS  Google Scholar 

  86. Opilski Z, Pustelny T, Maciak E, Bednorz M, Stolarczyk A, Jadamiec M. Investigations of optical interferometric structures applied in toxic gas sensors. Bull Polish Acad Sci – Techn Sci. 2005;53:151–156.

    CAS  Google Scholar 

  87. Suresh Kumar P, Abraham VS, Vallabhan CPG, Nampoori VPN, Radhakrishnan P. Fiber optic evanescent wave sensor for ammonia gas. Proc. SPIE. 2004;5280: 617–621.

    Google Scholar 

  88. Suresh Kumar P, Abraham VS, Vallabhan CPG, Nampoori VPN, Radhakrishnan P. Long-period grating in multimode fiber for ammonia gas detection. Proc. SPIE. 2004;5279:331–335.

    Google Scholar 

  89. Tao S, Gong S, Fanguy JC, Hu X. The application of a light guiding flexible tubular waveguide in evanescent wave absorption optical sensing. Sensor Actuator B Chem. 2007;120:724–731.

    Article  CAS  Google Scholar 

  90. Baldini F, Capobianchi A, Falai A, Mencaglia AA, Pennesi G. Reversibile and selective detection of NO2 by means of optical fibers. SensorActuator B Chem. 2001;74:12–17.

    Article  Google Scholar 

  91. Baldini F, Falai A, De Gaudio AR, Landi D, Lueger A, Mencaglia A, Scherr D, Trettnak W. Continuous monitoring of gastric carbon dioxide with optical fibers. Sensor Actuator B Chem. 2003;90:132–138.

    Article  CAS  Google Scholar 

  92. Stewart G, Whitenett G, Shields P, Marshall J, Culshaw B. Design of fiber laser and sensor systems for gas spectroscopy in the near-IR. Proc. SPIE. 2004;5272:172–180.

    Google Scholar 

  93. Tai H, Yamamoto K, Uchida M, Osawa S, Uehara K. Long distance simultaneous detection of methane and acetilene by using diode lasers-coupled with optical fibers. IEEE Photon Tech Lett. 1992;4:804–807.

    Article  Google Scholar 

  94. Stewart G, Mencaglia A, Philp W, Jin W. Interferometric signals in fiber optic methane sensors with wavelength modulation of the DFB laser source. J Lightwave Technol. 1998;16:43–48.

    Article  CAS  Google Scholar 

  95. Hodgkinson J, Pride R, Tandy C, Moodie DG, Stewart G. Field evaluation of multipoint fiber optic sensor array for methane detection (OMEGA). Proc. SPIE. 2000;4074: 90–98.

    Article  CAS  Google Scholar 

  96. Cone OM, Garcia S, Mirapeix JM, Echevarria J, Madruga Saavedra FJ, Lopez-Higuera JM. New optical cell design for pollutant detection. Proc. SPIE. 2002;4578:283–290.

    Google Scholar 

  97. Wang S, Che R. Novel spectrum absorption fiber methane sensor with DFBLD. Proc. SPIE. 2005;5634:619–626.

    Google Scholar 

  98. Bin Z, Guo-rong L, Zu-guang G, Sai-ling H. An optical sensing system for the concentration of methane based on fiber Bragg gratings. Optoel Lett. 2007;3:410–412.

    Article  Google Scholar 

  99. Hill KO, Meltz G. Fiber Bragg grating technology fundamentals and overview. J Lightwave Techn. 1997;15:1263–1276.

    Article  CAS  Google Scholar 

  100. Othonos A, Kalli K. Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing. Norwood, MA, USA: Artech House; 1999.

    Google Scholar 

  101. Caucheteur C, Debliquy M, Lahem D, Megret P. Catalytic Fiber Bragg Grating sensor for hydrogen leak detection in air. IEEE PhotTechn Lett. 2008;20:96–98.

    Article  CAS  Google Scholar 

  102. Alfeeli B, Pickrell G, Wang A. Sub-Nanoliter Spectroscopic Gas Sensor. Sensors. 2006;6:1308–1320.

    Article  CAS  Google Scholar 

  103. Sudo S, Yokohama I, Yasaka H, Sakai Y, Ikegami T. Optical fiber with sharp optical absorptions by vibrational-rotational absorption of C2H2 molecules. IEEE Photon Tech Lett. 1990;2:128–131.

    Article  Google Scholar 

  104. Stewart G, Jin W, Culshaw B. Prospects for fiber-optic evanescent-field gas sensors using absorption in the near-infrared. Sensor Actuator B Chem. 1997;38:42–47.

    Article  Google Scholar 

  105. Harrington J. A review of IR transmitting hollow waveguides. Fiber Integrated Optic. 2000;19:211–227.

    Article  CAS  Google Scholar 

  106. Russell PSJ. Photonic crystal fibers. Science. 2003;299:358–362.

    Article  CAS  Google Scholar 

  107. Monro TM, Belardi W, Furusawa K, Baggett JC, Broderick NGR, Richardson DJ. Sensing with microstructured optical fibers. Meas Sci Tech. 2001;12:854–858.

    Article  CAS  Google Scholar 

  108. Hoo YL, Jin W, Li C, Ho HL, Wang D, Windeler RS. Evanescent-wave gas sensing using microstructured fiber. Opt Eng. 2002;41:8–9.

    Article  Google Scholar 

  109. Cregan RF, Mangan BJ, Knight JC, Birks TA, Russell PSJ, Roberts PJ, Allan DC. Singlemode photonic band gap guidance of light in air. Science. 1999;285:1537–1539.

    Article  CAS  Google Scholar 

  110. Monro TM, Richardson DJ, Bennett PJ. Developing holey fibers for evanescent field devices. Electron Lett. 1999;35:1188–1189.

    Article  Google Scholar 

  111. Lægsgaard J, Mortensen NA, Riishede J, Bjarklev A. Material effects in air-guiding photonic bandgap fibers. J Opt Soc Am B. 2003;20:2046–2051.

    Article  Google Scholar 

  112. Humbert G, Knight J, Bouwmans G, Russell PSJ, Williams D, Roberts P, Mangan B. Hollow core photonic crystal fibers for beam delivery. Opt Express. 2004;12:1477–1484.

    Article  Google Scholar 

  113. Pickrell G, Peng W, Wang A. Random-hole optical fiber evanescent-wave gas sensing. Optic Lett. 2004;29:1476–1478.

    Article  CAS  Google Scholar 

  114. Hansen TP, Broeng J, Jakobsen C, Vienne G, Simonsen HR, Nielsen MD, Skovgaard PMW, Folkenberg JR, Bjarklev A. Air-guiding photonic bandgap fibers: Spectral properties, macrobending loss and practical handling. J Lightwave Tech. 2004;22:11–15.

    Article  CAS  Google Scholar 

  115. Pawlat J, Sugiyama T, Matsuo T, Ueda T. Photonic Bandgap Fiber for a sensing Device. IEEJ Transactions on Sensors and Micromachines. 2007;127:160–164.

    Article  Google Scholar 

  116. Konorov SO, Zheltikov AM, Scalora M. Photonic-crystal fiber as a multifunctional optical sensor and sample collector. Opt Express. 2005;13:3454–3459

    Article  CAS  Google Scholar 

  117. Cordeiro CMB, Franco MAR, Chesini G, Barretto ECS, Lwin R, Brito Cruz CH, Large MCJ. Microstructured-core optical fibre for evanescent sensing applications. Opt Express. 2006;14:13056–13066.

    Article  Google Scholar 

  118. Ritari T, Tuominen J, Ludvigsen H, Petersen JC, Sorensen T, Hansen TP, Simonsen HR. Gas sensing using air-guiding photonic bandgap fibers. Opt Express. 2004;12: 4080–4087.

    Article  CAS  Google Scholar 

  119. Thapa R, Knabe K, Faheem M, Naweed A, Weaver OL, Corwin KL. Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber. Opt Lett. 2006;31:2489–2491.

    Article  CAS  Google Scholar 

  120. Matejec V, Mrazek J, Podrazky O, Kanka J, Kasik I, Popisilova M. Microstructure fibers for sensing gaseous hydrocarbons. Proc. SPIE. 2007;6585:658511-1–658511-9.

    Google Scholar 

  121. Sberveglieri G, Editor. Gas Sensors: Principles, Operation and Developments. Springer. 1992.

    Google Scholar 

Download references

Acknowledgments

Useful discussions with IFAC colleagues of the Optoelectronics and Photonics section are gratefully acknowledged. Particular thanks are due to Francesco Baldini, Massimo Brenci, Riccardo Falciai, Anna Grazia Mignani, Stefano Pelli.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilaria Cacciari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cacciari, I., Righini, G.C. (2009). Optical Gas Sensing. In: Comini, E., Faglia, G., Sberveglieri, G. (eds) Solid State Gas Sensing. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09665-0_6

Download citation

Publish with us

Policies and ethics