FET Gas-Sensing Mechanism, Experimental and Theoretical Studies


The chemical gas sensor area has gained large improvements from the nanoscience technology, e.g., more reproducible processing including control on the nanoscale of annealing procedures, which implies improved long-term stability. Analytical tools have developed towards detection and investigation of ever smaller size phenomena. This has been of importance for the key problem of chemical gas sensors, the detailed understanding on the nanoscale level of the gas-sensing mechanism. In this chapter, which deals with FET (field effect transistor) gas sensor devices, we will review analytical tools that provide information about the detection mechanism with special emphasise on the FET sensor area. The DRIFT, diffuse reflection infrared Fourier transform, spectroscopy as a rather new and very important tool is reviewed. Theoretical modelling will speed up the process to provide further details in the mechanistic studies. Examples will be given in this chapter. A number of other important...


Schottky Diode Sensor Surface Detection Mechanism Drift Spectrum Drift Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Grants are acknowledged from the Swedish Research Council.


  1. 1.
    Ackelid U, Fogelberg J, Petersson L-G. Local gas sampling and surface hydrogen detection in catalysis on planar surfaces. Vacuum. 1991;42(14):889–895.CrossRefGoogle Scholar
  2. 2.
    Ackelid U, Petersson L-G. How a limited mass transfer in the gas phase may affect the steady-state response of a Pd-MOS hydrogen sensor. Sens Actuators B. 1991;3:139–146.CrossRefGoogle Scholar
  3. 3.
    Adixen Sensistor AB, (2008-08-17)
  4. 4.
    Ahdjoudj J, Minot C. A theoretical study of HCO2H adsorption on TiO2(110). Catalysis Letters. 1991;46:83–91.CrossRefGoogle Scholar
  5. 5.
    Alfè D, Gillan MJ. Ab initio statistical mechanics of surface adsorption and desorption. I. H2O on MgO(001) at low coverage. J. Chem. Phys. 2007;127:114709. doi: 10.1063/1.2772258.CrossRefGoogle Scholar
  6. 6.
    Andersson M, Wingbrant H, Lloyd Spetz A. Study of the CO Response of SiC based Field Effect Gas Sensors, Proc. IEEE Sensors 2005, Irivine, USA, October 31–November 2, 2005, pp. 105--108.Google Scholar
  7. 7.
    Andersson M, Wingbrant H, Petersson H, Unéus L, Svenningstorp H, Löfdahl M, Holmberg M, Lloyd Spetz A. Gas sensor arrays for combustion control. In: CA, Grimes EC Dickey, editors. Encyclopedia of Sensors. Stevenson Ranch, Ca, USA: American Scientific Publishers; 2006. vol. 4, pp. 139–154.Google Scholar
  8. 8.
    Andrei P, Fields LL, Zheng JP, Cheng Y, Xiong P. Modeling and simulation of single nanobelt SnO2 gas sensors with FET structure. Sensors and Actuators B. 2007;128:226–234. doi: 10.1016/j snb 2007.06.009.CrossRefGoogle Scholar
  9. 9.
    Applied Sensor AB, (2008-08-17).
  10. 10.
    Bates S P, Kresse G, Gillan MJ. The adsorption and dissociation of ROH molecules on TiO2 (110). Surf Sci. 1998;409:336–349.CrossRefGoogle Scholar
  11. 11.
    Batista Lopes Martins J, Longo E, Rodríguez Salmon OD, Espinoza V AA, Taft CA. The interaction of H2, CO, CO2, H2O and NH3 on ZnO surfaces: an Oniom study. Chem Phys Lett. 2004;400:481–486. doi: 10.1016/j cplett 2004.10.150.CrossRefGoogle Scholar
  12. 12.
    Baur B, Howgate J, von Ribbeck H-G, Gawlina Y, Bandalo V, Steinhoff G, Stutzmann M, Eickhoff M. Catalytic activity of enzymes immobilized on AlGaN/GaN solution gate field-effect transistors. Appl Phys Lett. 2006;89(18):183901-1–183901-3.CrossRefGoogle Scholar
  13. 13.
    Becker E, Skoglundh M, Andersson M, Lloyd Spetz A. In situ DRIFT study of hydrogen and CO adsorption on Pt/SiO2 model sensors. In Proc IEEE Sensors 2007, Atlanta, USA, Oct 28–31, 2007. pp. 1028–1031.Google Scholar
  14. 14.
    Bene R, Kiss G, Perczel I V, Meyer FA, Réti F. Application of quadrupole mass spectrometer for the analysis of near-surface gas composition during DC sensor-tests. Vacuum. 1998;50(3–4):331–337.CrossRefGoogle Scholar
  15. 15.
    Benítez JJ, Centeno MA, Lois dit Picard C, Merdrignac O, Laurent Y, Odriozola JA. In situ diffuse reflectance infrared spectroscopy (DRIFTS) study of the reversibility of CdGeON sensors towards oxygen. Sens Actuators B. 1996;31:197–202.CrossRefGoogle Scholar
  16. 16.
    Bergveld P. Thirty years of ISFETOLOGY what happened in the past 30 years and what may happen in the next 30 years. Sens Actuators B. 2003;88:1–20.CrossRefGoogle Scholar
  17. 17.
    Buchholt K, Ieva E, Torsi L, Cioffi N, Colianni L, Söderlind F, Käll P-O, Lloyd Spetz A. A comparison between the use of Pd- and Au-nanoparticles as sensing layers in a field effect NOx-sensitive sensor. In: Proc. 2nd Int Conf on Sensing Techn November 26–28, Palmerston, North New Zealand, 2007. pp 87–92.Google Scholar
  18. 18.
    Calatayud M, Andrés J, Beltrán A. A theoretical analysis of adsorption and dissociation of CH3OH on the stochiometric SnO2(110) surface. Surf Sci. 1999;430:213–222.CrossRefGoogle Scholar
  19. 19.
    Casarin M, Maccato C, Vittadini A. Theoretical investigation of the chemisorption of H2 and CO on the ZnO(10–10) surface. Inorg Chem. 1998;37:5482–5490. doi: 10.1021/ic980443 s.CrossRefGoogle Scholar
  20. 20.
    Dannetun H, Petersson L-G. NO dissociation on polycrystalline palladium studied with a Pd-metal-oxide-semiconductor structure. J Appl Phys. 1989;66(3):1397–1402.CrossRefGoogle Scholar
  21. 21.
    D’Ercole A, Giamello E, Pisani C, Ojamäe L. Embedded-cluster study of hydrogen interaction with an oxygen vacancy at the magnesium oxide surface. J Phys Chem B. 1999;103:3872–3976. doi: 10.1021/jp990117d.CrossRefGoogle Scholar
  22. 22.
    Diebold U. The surface science of titanium dioxide. Surface Sci Rep. 2002;48:53–229.CrossRefGoogle Scholar
  23. 23.
    Ealet B, Goniakowski J, Finocchi F. Water dissociation on a defective MgO(100) surface: Role of divacancies. Phys Rev B. 2004;69:195413. doi: 10.1103/PhysRevB.69.195413.CrossRefGoogle Scholar
  24. 24.
    Emiroglu S, Bârasan N, Weimar U, Hoffman V. In situ diffuse reflectance infrared spectroscopy study of CO adsorption on SnO2. Thin Solid Films. 2001;391:176–185.CrossRefGoogle Scholar
  25. 25.
    Eriksson M, Ekedahl L-G. The influence of CO on the response of hydrogen sensitive Pd-MOS devices. Sens Actuators B. 1997;42:217–223.CrossRefGoogle Scholar
  26. 26.
    Eriksson M, Salomonsson A, Lundström I. The influence of the insulator surface properties on the hydrogen response of field-effect gas sensors. J Appl Phys. 2005;98:034903-1–034903-6.CrossRefGoogle Scholar
  27. 27.
    Filippini D, Weiss T, Aragón R, Weimar U. New NO2 sensor based on Au gate filed effect devices. Sens Actuators B. 2001;78:195–201.CrossRefGoogle Scholar
  28. 28.
    Fogelberg J, Eriksson M, Dannetun H, Petersson L-G. Kinetic modeling of hydrogen adsorption/absorption in thin films on hydrogen-sensitive field-effect devices: Observation of large hydrogen-induced dipoles at the Pd-SiO2 interface. J Appl Phys. 1995;78(2):988–996.CrossRefGoogle Scholar
  29. 29.
    Gavartin J L, Schluger A L, Foster A S, Bersuker G I. The role of nitrogen-related defects in high-k dielectric oxides: density-functional studies. J Appl Phys. 2005;97:053704. doi: 10.1063/1.1854210.CrossRefGoogle Scholar
  30. 30.
    Gong X-Q, Selloni A, Vittadini A. Density functional theory study of formic acid adsorption on anatase TiO2(001): Geometries, energetics, and effects of coverage, hydration, and reconstruction. J Phys Chem B. 2006;110:2804–2811. doi: 10.1021/jp056572t.CrossRefGoogle Scholar
  31. 31.
    Hahn S H, Bârsan N, Weimar U, Ejakov SG, Visser JH, Soltis RE. CO sensing with SnO2 thick film sensors: role of oxygen and water vapour. Thin Solid Films. 2003;436:17–24.CrossRefGoogle Scholar
  32. 32.
    Ho Kahng Y, Tobin RG, Loloee R, Ghosh RN. J Appl Phys. 2007;102:064505-1–064505-9.Google Scholar
  33. 33.
    Holmberg M, Lundström I. A new method for the detection of hydrogen spillover. Appl Surf Sci. 1996;93:67–76.CrossRefGoogle Scholar
  34. 34.
    Hong S, Rahman TS, Jacobi K, Ertl E. Interaction of NO with RuO2(1110) surface: a first principles study. J Phys Chem. 2007;111:12361–12368. doi: 10.1021/jp072063a.Google Scholar
  35. 35.
    Ieva E, Buchholt K, Colianni L, Cioffi N, Sabbatini L, Capitani GC, Lloyd Spetz A, Käll P-O, Torsi L. Au nanoparticles as gate material for NOx Field Effect Gas Sensors, Sensor Letters. 2008;6(4):577–584.Google Scholar
  36. 36.
    Jensen F. Introduction to Computational Chemistry. John Wiley & Sons, reprinted 2001 ISBN 0-471-98425-6. 1999.Google Scholar
  37. 37.
    Jiménez I, Centeno MA, Scotti R, Morazzoni F, Arbiol J, Cornet A, Morante JR. NH3 interaction with chromium-doped WO3 nanocrystalline powders for gas-sensing applications. J Mat Chem. 2004;14:2412–2420.CrossRefGoogle Scholar
  38. 38.
    Johansson M, Ekedahl L-G. The water formation rate on platinum and palladium as a function of the surface hydrogen pressure from three-dimensional hydrogen pressure distributions. Appl Surf Sci. 2001;180:27–35.CrossRefGoogle Scholar
  39. 39.
    Johansson M, Loyd D, Lundström I. Influence of mass transfer on the steady-state response of catalytic –metal-gate sensors. Sens Actuators B. 1997;40:125–133.CrossRefGoogle Scholar
  40. 40.
    Katti VR, Debnath AK, Muthe KP, Kaur M, Dua AK, Gadkari SC, Gupta SK, Sahni VC. Mechanism of drifts in H2S sensing properties of SnO2:CuO composite thin film sensors prepared by thermal evaporation. Sens Actuators B. 2003;96:245–252.CrossRefGoogle Scholar
  41. 41.
    Klingvall R, Lundström I, Löfdahl M, Eriksson M. A combinatorial approach for field-effect gas sensor research and development. IEEE Sens J. 2005;5:995–1003.CrossRefGoogle Scholar
  42. 42.
    Knapp M, Crihan D, Seitsonen AP, Over H. Hydrogen Transfer Reaction on the Surface of an Oxide Catalyst. J Am Chem Soc. 2005;127:3236–3237. doi: 10.1021/ja043355h.CrossRefGoogle Scholar
  43. 43.
    Koziej D, Bârsan N, Weimar U, Szuber J, Shimanoe K, Yamazoe N. Water-oxygen interplay on tin dioxide surface: Implication on gas sensing. Chem Phys Lett. 2005;410:321–323.CrossRefGoogle Scholar
  44. 44.
    Koziej D, Thomas K, Bârsan N, Thibault-Starzyk F, Weimar U. Influence of annealing temperature on the CO sensing mechanism for tin dioxide based sensors – Operando studies. Cat today. 2007;126:211–218.CrossRefGoogle Scholar
  45. 45.
    Käckell P, Terakura K. First-principle analysis of the dissociative adsorption of formic acid on rutile TiO2 (110). Applied Surf Sci. 2000;166:370–375.CrossRefGoogle Scholar
  46. 46.
    Leblanc E, Perier-Camby L, Thomas G, Gibert R, Primet M, Gelin P. NOx adsorption onto dehydroxylated or hydroxylated tin dioxide surface. Application to SnO2-based sensors. Sens Actuators B. 2000;62:67–72.CrossRefGoogle Scholar
  47. 47.
    Lundström I, Sundgren H, Winquist F, Eriksson M, Krantz-Rülcker C, Lloyd-Spetz A. Twenty-five years of field effect gas sensor research in Linköping. Sens Actuators B. 2007;121:247–262.CrossRefGoogle Scholar
  48. 48.
    Löfdahl M, Thesis, Linköping studies in Science and Technology, dissertation No. 696, Linköping, Sweden 2001, pp. 93–111.Google Scholar
  49. 49.
    Löfdahl M, Utaiwasin C, Carlsson A, Lundström I, Eriksson M. Gas response dependence on gate metal morphology of field-effect devices. Sens Actuators B. 2001;80:183–192.CrossRefGoogle Scholar
  50. 50.
    Markovits A, Mguig B, Calatayud M, Minot C. Spin localization for NO adsorption on surface O atoms of metal oxides, Catalysis Today. 2006;113:201–207. doi: 10.1016/j.cattod.2005.11.081.CrossRefGoogle Scholar
  51. 51.
    Marsal A, Centeno MA, Odriozola JA, Cornet A, Morante JR. DRIFTS analysis of the CO2 detection mechanisms using LaOCl sensing material. Sens Actuators B. 2005;108: 484–489.CrossRefGoogle Scholar
  52. 52.
    Ménétrey M, Markovits A, Minot C. Adsorption of chlorine and oxygen atoms on clean and defective rutile-TiO2(110) and MgO(100) surfaces. J Mol Struct: THEOCHEM. 2007;808:71–79. doi: 10.1016/j.theochem.2006.12.044.CrossRefGoogle Scholar
  53. 53.
    Nakagomi S, Lloyd Spetz A. Gas sensor device based on Catalytic metal-Metal oxide-SiC structure. In: Grimes CA, E. Dickey C, editors. Encyclopedia of Sensors. Stevenson Ranch, Ca, USA: American Scientific Publishers 2006. vol. 4, pp. 155–170.Google Scholar
  54. 54.
    Nakagomi S, Tobias P, Baranzahi A, Lundström I, Mårtensson P, Lloyd Spetz A. Influence of carbon monoxide, water, and oxygen on high temperature catlaytic metal – oxide – silicon carbide structures. Sens Actuators B. 1997;45/3:183–191.CrossRefGoogle Scholar
  55. 55.
    Nakatsuji H, Yoshimoto M, Umemura Y, Takagi S, Hada M. Theoretical study of the chemisorption and surface reaction of HCOOH on a ZnO(10-10) surface. J Phys Chem. 1996;100:694–700.CrossRefGoogle Scholar
  56. 56.
    Ojamäe L, Aulin C, Pedersen H, Käll P-O. IR and quantum-chemical studies of carboxylic acid and glycine adsorption on rutile TiO2 nanoparticles. J Colloid and Interface Sci 2006;296:71–78. doi: 10.1016/j.jcis.2005.08.037.CrossRefGoogle Scholar
  57. 57.
    Ojamäe L, Pisani C. Theoretical characterization of divacancies at the surface and in bulk MgO. J Chem Phys. 1998;109:10984–10995.CrossRefGoogle Scholar
  58. 58.
    Ostrick B, Mühlsteff J, Fleischer M, Meixner H, Doll T, Kohl C-D. Adsorbed water as key to room temperature gas-sensitive reactions in work function type sensors: the carbonate – carbon dioxide system. Sens Actuators B. 1999.57:115–119.CrossRefGoogle Scholar
  59. 59.
    Ostrick B, Pohle R, Fleischer M, Meixner H. TiN in work function type sensors: a stable ammonia sensitive material for room temperature operation with low humidity cross sensitivity. Sens Actuators B. 2000;68:234–239.CrossRefGoogle Scholar
  60. 60.
    Over H, Kim YD, Seitsonen AP, Wendt S, Lundgren E, Schmid M, Varga P, Morgante A, Ertl G. Atomic-Scale Structure and Catalytic Reactivity of the RuO2(110) Surface. Science. 2000;287:1474–1476. doi: 10.1126/science.287.5457.1474.CrossRefGoogle Scholar
  61. 61.
    Persson P, Lunell S, Ojamäe L. Quantum-chemical prediction of the adsorption conformations and dynamics at the HCOOH-covered ZnO(10-10) surfaces. Int J Quantum Chem. 2002;89:172–180. doi: 10.1002/qua.10316.CrossRefGoogle Scholar
  62. 62.
    Persson P, Ojamäe L. Periodic Hartree-Fock study of the adsorption of formic acid on ZnO(10-10). Chem Phys Lett. 2000;321:302–308.CrossRefGoogle Scholar
  63. 63.
    Petrini D, Larsson K. Electron transfer from a diamond (100) surface to an atmospheric water adlayer: A quantum mechanical study. J Phys Chem C. 2007;111:13804–13812. doi: 10.1021/jp070565i.CrossRefGoogle Scholar
  64. 64.
    Pillay D, Hwang GS. O2-coverage-dependent CO oxidation on reduced TiO2(110): A first principles study. J Chem Phys. 2006;125:144706. dio: 10.1063/1.12354083.CrossRefGoogle Scholar
  65. 65.
    Pisani C. Ab-initio approaches to the quantum-mechanical treatment of periodic systems. In: C Pisani, editors. Lecture Notes in Chemistry. Springer-Verlag, ISBN 3-540-61645-4. vol. 67, 1996. pp. 47–75.Google Scholar
  66. 66.
    Reetz MT, Helbig W. Size-selective synthesis of nanostructured transition metal clusters. J Am Chem Soc. 1994;116:7401–7402.CrossRefGoogle Scholar
  67. 67.
    Reetz MT, Helbig W, Quaiser SA, Stimming U, Breuer N, Vogel R. Visualization of Surfactants on nanostructured Palladium Clusters by a Combination of STM and High-resolution TEM. Science. 1995;267:367–369.CrossRefGoogle Scholar
  68. 68.
    Salamonsson A, Eriksson M, Dannetun H. Hydrogen interaction with platinum and palladium metal – insulator – semiconductor devices. J Appl Phys. 2005;98:014505-1–014505-9.Google Scholar
  69. 69.
    Salomonsson A, Petoral Jr RM, Uvdal K, Aulin C, Käll P-O, Ojamäe L, Strand M, Sanati M, Lloyd Spetz A. Nanocrystalline ruthenium oxide and ruthenium in sensing applications – an experimental and theoretical study. J Nanoparticle Res. 2006;8:899–910. doi: 10.1007/s11051-005-9058-1.CrossRefGoogle Scholar
  70. 70.
    Schalwig J, Kreisl P, Ahlers S, Müller G. Response mechanism of SiC-based MOS Field-Effect gas sensors. IEEE Sens J. 2002;2(5):394–402.CrossRefGoogle Scholar
  71. 71.
    Scharnagel K, Eriksson M, Karthigeyan A, Burgmair M, Zimmer M, Eisele I. Hydrogen detection at high concentrations with stabilized palladium. Sens Actuators B. 2001;78:138–143.CrossRefGoogle Scholar
  72. 72.
    SenSiC AB,
  73. 73.
    Spetz A, Armgarth M, Lundström L. Hydrogen and ammonia response of metal-silicon dioxide- silicon structures with platinum gates. J Appl Phys. 1988:64:1274–1283.Google Scholar
  74. 74.
    Spetz A, Helmersson U, Enquist F, Armgarth M, Lundström L. Structure and ammonia sensitivity of thin platinum or iridium gates in metal-oxide-silicon capacitors. Thin Solid Films. 1989;177:77–93.CrossRefGoogle Scholar
  75. 75.
    Steinhoff, G., Baur, B., Wrobel, G., Ingebrandt, S., Offenhäusser, A., Dadgar, A., Krost, A., Stutzmann M, Eickhoff, M. Recording of cell action potentials with AlGaNGaN field-effect transistors. Appl Phys Lett. 2005;86(3):033901-1–033901-3. see also Erratum. Appl Phys Lett. 2006;89:019901.CrossRefGoogle Scholar
  76. 76.
    Sun Q, Reuter K, Scheffler M. Hydrogen adsorption on RuO2(110): Density-functional calculations. Phys Rev B. 2004;70:235402. doi: 10.1103/PhysRevB.70.235402.CrossRefGoogle Scholar
  77. 77.
    Tse J. Ab initio molecular dynamics with density functional theory. Annu. Rev Phys Chem. 2002;53:249–290. doi: 10.1146/annurev physchem 53.090401.105737.CrossRefGoogle Scholar
  78. 78.
    Uemura Y, Taniike T, Tada M, Morikawa Y, Iwasawa Y. Switchover of reaction mechanism for the catalytic decomposition of HCOOH on a TiO2(110) surface. J Phys Chem C. 2007;111:16379–16386. doi: 10.1021/jp074524yCrossRefGoogle Scholar
  79. 79.
    Vuong DD, Sakai G, Shimanoe K, Yamazoe N. Hydrogen sulfide gas sensing properties on thin films derived from SnO2 sols different in grain size. Sens Actuators B. 2005;105:437–442.CrossRefGoogle Scholar
  80. 80.
    Wallin M, Grönbeck H, Lloyd Spetz A, Skoglundh M. Vibrational study of ammonia adsorption on Pt/SiO2. Appl Surf Sci. 2004;235:487–500. doi: 10.1016/j.apsusc.2004.03.225.CrossRefGoogle Scholar
  81. 81.
    Wallin M, Grönbeck H, Lloyd Spetz A, Eriksson M, Skoglundh M. Vibrational analysis of H2 and D2 adsorption on Pt/SiO2. J Phys Chem B. 2005;109:9581–9588.CrossRefGoogle Scholar
  82. 82.
    Wallin M, Byberg M, Grönbeck H, Skoglundh M, Eriksson M, Lloyd Spetz A. Vibrational analysis of H2 and NH3 adsorption on Pt/SiO2 and Ir/SiO2 model sensors. In Proc IEEE Sensors 2007, Atlanta, USA, Oct 28–31, 2007. pp. 1315–1317.Google Scholar
  83. 83.
    Wang H, Schneider WF. Effects of coverage on the structures, energetics, and electronics of oxygen adsorption on RuO2(110). J Chem Phys. 2007;127:064706 doi 10.1063/1.2752501.CrossRefGoogle Scholar
  84. 84.
    Weidemann O, Hermann M, Steinhoff G, Wingbrant H, Lloyd Spetz A, Stutzmann M, Eickhoff M. Influence of surface oxides on hydrogen-sensitive Pd:GaN Schottky diodes. Appl Phys Lett. 2003;83(4):773–775.CrossRefGoogle Scholar
  85. 85.
    Wendt S, Schaub R, Matthiesen J, Vestergaard E K, Wahlström E, Rasmussen MD, Thostrup P, Molina LM, Lægsgaard E, Stensgaard I, Hammer B, Besenbacher F. Oxygen vacancies on TiO2(110) and their interaction with H2O and O2: A combined high-resolution STM and DFT study. Surf Sci. 2005;598:226–245. doi: 10.1016/j.susc.2005.08.041.CrossRefGoogle Scholar
  86. 86.
    Wingbrant H, Svenningstorp H, Kubinski DJ, Visser JH, Andersson M, Unéus L, Löfdahl M, Lloyd Spetz A. MISiC-FET NH3 sensors for SCR control in exhaust and flue gases. In: CA Grimes, EC Dickey, editors. Stevenson Ranch, Ca, USA: Encyclopedia of Sensors, American Scientific Publishers; 2006. vol 6, pp. 205–218.Google Scholar
  87. 87.
    Wurtzinger O, Reinhardt G. CO-sensing properties of doped SnO2 sensors in H2-rich gases. Sens Actuators B. 2004;103:104–110.CrossRefGoogle Scholar
  88. 88.
    Yoshimoto M, Takagi S, Umemura Y, Hada M, Nakatsuji H. Theoretical study on the decomposition of HCOOH on a ZnO(10-10) surface. J Catalysis. 1998;173:53–63.CrossRefGoogle Scholar
  89. 89.
    Zangooie S, Arwin H, Lundström I and Lloyd Spetz A. Ozone Treatment of SiC for Improved Performance of Gas Sensitive Schottky Diodes. Mat Sci Forum. 2000;338–342:1085–1088Google Scholar
  90. 90.
    Zhanpeisov NU, Fukumura H. Oxygen vacancy formation on rutile TiO2(110) and its interaction with molecular oxygen: A theoretical density functional theory study. J Phys Chem C. 2007;111:16941–16945. doi: 10.1021/jp074869g.CrossRefGoogle Scholar
  91. 91.
    Zhou Z, Zhao J, Chen Y, von Ragué Schleyer P, Chen Z. Energetics and electronic structures of AlN nanotubes/wires and their potential application as ammonia sensors. Nanotechnology. 2007;18:424023 (7 pp). doi: 10.1088/0957-4484/18/42/424023.CrossRefGoogle Scholar
  92. 92.
    Åbom AE, Haasch RT, Hellgren N, Finnegan N, Hultman L, Eriksson M. Characterization of the metal-insulator interface of field-effect chemical sensors. J Appl Phys. 2003;93(12):9760–9768.CrossRefGoogle Scholar
  93. 93.
    Åbom A E, Persson P, Hultman L, Eriksson M. Influence of gate metal film growth parameters on the properties of gas sensitive field-effect devices. Thin Solid Films. 2002;409:233–242.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Physics, Chemistry and BiologyLinköping UniversitySweden

Personalised recommendations