Skip to main content

FET Gas-Sensing Mechanism, Experimental and Theoretical Studies

  • Chapter
  • First Online:
Solid State Gas Sensing

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackelid U, Fogelberg J, Petersson L-G. Local gas sampling and surface hydrogen detection in catalysis on planar surfaces. Vacuum. 1991;42(14):889–895.

    Article  CAS  Google Scholar 

  2. Ackelid U, Petersson L-G. How a limited mass transfer in the gas phase may affect the steady-state response of a Pd-MOS hydrogen sensor. Sens Actuators B. 1991;3:139–146.

    Article  Google Scholar 

  3. Adixen Sensistor AB, http://www.sensistor.se (2008-08-17)

  4. Ahdjoudj J, Minot C. A theoretical study of HCO2H adsorption on TiO2(110). Catalysis Letters. 1991;46:83–91.

    Article  Google Scholar 

  5. Alfè D, Gillan MJ. Ab initio statistical mechanics of surface adsorption and desorption. I. H2O on MgO(001) at low coverage. J. Chem. Phys. 2007;127:114709. doi: 10.1063/1.2772258.

    Article  Google Scholar 

  6. Andersson M, Wingbrant H, Lloyd Spetz A. Study of the CO Response of SiC based Field Effect Gas Sensors, Proc. IEEE Sensors 2005, Irivine, USA, October 31–November 2, 2005, pp. 105--108.

    Google Scholar 

  7. Andersson M, Wingbrant H, Petersson H, Unéus L, Svenningstorp H, Löfdahl M, Holmberg M, Lloyd Spetz A. Gas sensor arrays for combustion control. In: CA, Grimes EC Dickey, editors. Encyclopedia of Sensors. Stevenson Ranch, Ca, USA: American Scientific Publishers; 2006. vol. 4, pp. 139–154.

    Google Scholar 

  8. Andrei P, Fields LL, Zheng JP, Cheng Y, Xiong P. Modeling and simulation of single nanobelt SnO2 gas sensors with FET structure. Sensors and Actuators B. 2007;128:226–234. doi: 10.1016/j snb 2007.06.009.

    Article  Google Scholar 

  9. Applied Sensor AB, http://www.appliedsensor.com (2008-08-17).

  10. Bates S P, Kresse G, Gillan MJ. The adsorption and dissociation of ROH molecules on TiO2 (110). Surf Sci. 1998;409:336–349.

    Article  CAS  Google Scholar 

  11. Batista Lopes Martins J, Longo E, Rodríguez Salmon OD, Espinoza V AA, Taft CA. The interaction of H2, CO, CO2, H2O and NH3 on ZnO surfaces: an Oniom study. Chem Phys Lett. 2004;400:481–486. doi: 10.1016/j cplett 2004.10.150.

    Article  Google Scholar 

  12. Baur B, Howgate J, von Ribbeck H-G, Gawlina Y, Bandalo V, Steinhoff G, Stutzmann M, Eickhoff M. Catalytic activity of enzymes immobilized on AlGaN/GaN solution gate field-effect transistors. Appl Phys Lett. 2006;89(18):183901-1–183901-3.

    Article  Google Scholar 

  13. Becker E, Skoglundh M, Andersson M, Lloyd Spetz A. In situ DRIFT study of hydrogen and CO adsorption on Pt/SiO2 model sensors. In Proc IEEE Sensors 2007, Atlanta, USA, Oct 28–31, 2007. pp. 1028–1031.

    Google Scholar 

  14. Bene R, Kiss G, Perczel I V, Meyer FA, Réti F. Application of quadrupole mass spectrometer for the analysis of near-surface gas composition during DC sensor-tests. Vacuum. 1998;50(3–4):331–337.

    Article  CAS  Google Scholar 

  15. Benítez JJ, Centeno MA, Lois dit Picard C, Merdrignac O, Laurent Y, Odriozola JA. In situ diffuse reflectance infrared spectroscopy (DRIFTS) study of the reversibility of CdGeON sensors towards oxygen. Sens Actuators B. 1996;31:197–202.

    Article  Google Scholar 

  16. Bergveld P. Thirty years of ISFETOLOGY what happened in the past 30 years and what may happen in the next 30 years. Sens Actuators B. 2003;88:1–20.

    Article  Google Scholar 

  17. Buchholt K, Ieva E, Torsi L, Cioffi N, Colianni L, Söderlind F, Käll P-O, Lloyd Spetz A. A comparison between the use of Pd- and Au-nanoparticles as sensing layers in a field effect NOx-sensitive sensor. In: Proc. 2nd Int Conf on Sensing Techn November 26–28, Palmerston, North New Zealand, 2007. pp 87–92.

    Google Scholar 

  18. Calatayud M, Andrés J, Beltrán A. A theoretical analysis of adsorption and dissociation of CH3OH on the stochiometric SnO2(110) surface. Surf Sci. 1999;430:213–222.

    Article  CAS  Google Scholar 

  19. Casarin M, Maccato C, Vittadini A. Theoretical investigation of the chemisorption of H2 and CO on the ZnO(10–10) surface. Inorg Chem. 1998;37:5482–5490. doi: 10.1021/ic980443 s.

    Article  CAS  Google Scholar 

  20. Dannetun H, Petersson L-G. NO dissociation on polycrystalline palladium studied with a Pd-metal-oxide-semiconductor structure. J Appl Phys. 1989;66(3):1397–1402.

    Article  CAS  Google Scholar 

  21. D’Ercole A, Giamello E, Pisani C, Ojamäe L. Embedded-cluster study of hydrogen interaction with an oxygen vacancy at the magnesium oxide surface. J Phys Chem B. 1999;103:3872–3976. doi: 10.1021/jp990117d.

    Article  Google Scholar 

  22. Diebold U. The surface science of titanium dioxide. Surface Sci Rep. 2002;48:53–229.

    Article  Google Scholar 

  23. Ealet B, Goniakowski J, Finocchi F. Water dissociation on a defective MgO(100) surface: Role of divacancies. Phys Rev B. 2004;69:195413. doi: 10.1103/PhysRevB.69.195413.

    Article  Google Scholar 

  24. Emiroglu S, Bârasan N, Weimar U, Hoffman V. In situ diffuse reflectance infrared spectroscopy study of CO adsorption on SnO2. Thin Solid Films. 2001;391:176–185.

    Article  CAS  Google Scholar 

  25. Eriksson M, Ekedahl L-G. The influence of CO on the response of hydrogen sensitive Pd-MOS devices. Sens Actuators B. 1997;42:217–223.

    Article  Google Scholar 

  26. Eriksson M, Salomonsson A, Lundström I. The influence of the insulator surface properties on the hydrogen response of field-effect gas sensors. J Appl Phys. 2005;98:034903-1–034903-6.

    Article  Google Scholar 

  27. Filippini D, Weiss T, Aragón R, Weimar U. New NO2 sensor based on Au gate filed effect devices. Sens Actuators B. 2001;78:195–201.

    Article  Google Scholar 

  28. Fogelberg J, Eriksson M, Dannetun H, Petersson L-G. Kinetic modeling of hydrogen adsorption/absorption in thin films on hydrogen-sensitive field-effect devices: Observation of large hydrogen-induced dipoles at the Pd-SiO2 interface. J Appl Phys. 1995;78(2):988–996.

    Article  CAS  Google Scholar 

  29. Gavartin J L, Schluger A L, Foster A S, Bersuker G I. The role of nitrogen-related defects in high-k dielectric oxides: density-functional studies. J Appl Phys. 2005;97:053704. doi: 10.1063/1.1854210.

    Article  Google Scholar 

  30. Gong X-Q, Selloni A, Vittadini A. Density functional theory study of formic acid adsorption on anatase TiO2(001): Geometries, energetics, and effects of coverage, hydration, and reconstruction. J Phys Chem B. 2006;110:2804–2811. doi: 10.1021/jp056572t.

    Article  CAS  Google Scholar 

  31. Hahn S H, Bârsan N, Weimar U, Ejakov SG, Visser JH, Soltis RE. CO sensing with SnO2 thick film sensors: role of oxygen and water vapour. Thin Solid Films. 2003;436:17–24.

    Article  CAS  Google Scholar 

  32. Ho Kahng Y, Tobin RG, Loloee R, Ghosh RN. J Appl Phys. 2007;102:064505-1–064505-9.

    Google Scholar 

  33. Holmberg M, Lundström I. A new method for the detection of hydrogen spillover. Appl Surf Sci. 1996;93:67–76.

    Article  CAS  Google Scholar 

  34. Hong S, Rahman TS, Jacobi K, Ertl E. Interaction of NO with RuO2(1110) surface: a first principles study. J Phys Chem. 2007;111:12361–12368. doi: 10.1021/jp072063a.

    CAS  Google Scholar 

  35. Ieva E, Buchholt K, Colianni L, Cioffi N, Sabbatini L, Capitani GC, Lloyd Spetz A, Käll P-O, Torsi L. Au nanoparticles as gate material for NOx Field Effect Gas Sensors, Sensor Letters. 2008;6(4):577–584.

    Google Scholar 

  36. Jensen F. Introduction to Computational Chemistry. John Wiley & Sons, reprinted 2001 ISBN 0-471-98425-6. 1999.

    Google Scholar 

  37. Jiménez I, Centeno MA, Scotti R, Morazzoni F, Arbiol J, Cornet A, Morante JR. NH3 interaction with chromium-doped WO3 nanocrystalline powders for gas-sensing applications. J Mat Chem. 2004;14:2412–2420.

    Article  Google Scholar 

  38. Johansson M, Ekedahl L-G. The water formation rate on platinum and palladium as a function of the surface hydrogen pressure from three-dimensional hydrogen pressure distributions. Appl Surf Sci. 2001;180:27–35.

    Article  CAS  Google Scholar 

  39. Johansson M, Loyd D, Lundström I. Influence of mass transfer on the steady-state response of catalytic –metal-gate sensors. Sens Actuators B. 1997;40:125–133.

    Article  Google Scholar 

  40. Katti VR, Debnath AK, Muthe KP, Kaur M, Dua AK, Gadkari SC, Gupta SK, Sahni VC. Mechanism of drifts in H2S sensing properties of SnO2:CuO composite thin film sensors prepared by thermal evaporation. Sens Actuators B. 2003;96:245–252.

    Article  Google Scholar 

  41. Klingvall R, Lundström I, Löfdahl M, Eriksson M. A combinatorial approach for field-effect gas sensor research and development. IEEE Sens J. 2005;5:995–1003.

    Article  CAS  Google Scholar 

  42. Knapp M, Crihan D, Seitsonen AP, Over H. Hydrogen Transfer Reaction on the Surface of an Oxide Catalyst. J Am Chem Soc. 2005;127:3236–3237. doi: 10.1021/ja043355h.

    Article  CAS  Google Scholar 

  43. Koziej D, Bârsan N, Weimar U, Szuber J, Shimanoe K, Yamazoe N. Water-oxygen interplay on tin dioxide surface: Implication on gas sensing. Chem Phys Lett. 2005;410:321–323.

    Article  CAS  Google Scholar 

  44. Koziej D, Thomas K, Bârsan N, Thibault-Starzyk F, Weimar U. Influence of annealing temperature on the CO sensing mechanism for tin dioxide based sensors – Operando studies. Cat today. 2007;126:211–218.

    Article  CAS  Google Scholar 

  45. Käckell P, Terakura K. First-principle analysis of the dissociative adsorption of formic acid on rutile TiO2 (110). Applied Surf Sci. 2000;166:370–375.

    Article  Google Scholar 

  46. Leblanc E, Perier-Camby L, Thomas G, Gibert R, Primet M, Gelin P. NOx adsorption onto dehydroxylated or hydroxylated tin dioxide surface. Application to SnO2-based sensors. Sens Actuators B. 2000;62:67–72.

    Article  Google Scholar 

  47. Lundström I, Sundgren H, Winquist F, Eriksson M, Krantz-Rülcker C, Lloyd-Spetz A. Twenty-five years of field effect gas sensor research in Linköping. Sens Actuators B. 2007;121:247–262.

    Article  Google Scholar 

  48. Löfdahl M, Thesis, Linköping studies in Science and Technology, dissertation No. 696, Linköping, Sweden 2001, pp. 93–111.

    Google Scholar 

  49. Löfdahl M, Utaiwasin C, Carlsson A, Lundström I, Eriksson M. Gas response dependence on gate metal morphology of field-effect devices. Sens Actuators B. 2001;80:183–192.

    Article  Google Scholar 

  50. Markovits A, Mguig B, Calatayud M, Minot C. Spin localization for NO adsorption on surface O atoms of metal oxides, Catalysis Today. 2006;113:201–207. doi: 10.1016/j.cattod.2005.11.081.

    Article  CAS  Google Scholar 

  51. Marsal A, Centeno MA, Odriozola JA, Cornet A, Morante JR. DRIFTS analysis of the CO2 detection mechanisms using LaOCl sensing material. Sens Actuators B. 2005;108: 484–489.

    Article  Google Scholar 

  52. Ménétrey M, Markovits A, Minot C. Adsorption of chlorine and oxygen atoms on clean and defective rutile-TiO2(110) and MgO(100) surfaces. J Mol Struct: THEOCHEM. 2007;808:71–79. doi: 10.1016/j.theochem.2006.12.044.

    Article  Google Scholar 

  53. Nakagomi S, Lloyd Spetz A. Gas sensor device based on Catalytic metal-Metal oxide-SiC structure. In: Grimes CA, E. Dickey C, editors. Encyclopedia of Sensors. Stevenson Ranch, Ca, USA: American Scientific Publishers 2006. vol. 4, pp. 155–170.

    Google Scholar 

  54. Nakagomi S, Tobias P, Baranzahi A, Lundström I, Mårtensson P, Lloyd Spetz A. Influence of carbon monoxide, water, and oxygen on high temperature catlaytic metal – oxide – silicon carbide structures. Sens Actuators B. 1997;45/3:183–191.

    Article  Google Scholar 

  55. Nakatsuji H, Yoshimoto M, Umemura Y, Takagi S, Hada M. Theoretical study of the chemisorption and surface reaction of HCOOH on a ZnO(10-10) surface. J Phys Chem. 1996;100:694–700.

    Article  CAS  Google Scholar 

  56. Ojamäe L, Aulin C, Pedersen H, Käll P-O. IR and quantum-chemical studies of carboxylic acid and glycine adsorption on rutile TiO2 nanoparticles. J Colloid and Interface Sci 2006;296:71–78. doi: 10.1016/j.jcis.2005.08.037.

    Article  Google Scholar 

  57. Ojamäe L, Pisani C. Theoretical characterization of divacancies at the surface and in bulk MgO. J Chem Phys. 1998;109:10984–10995.

    Article  Google Scholar 

  58. Ostrick B, Mühlsteff J, Fleischer M, Meixner H, Doll T, Kohl C-D. Adsorbed water as key to room temperature gas-sensitive reactions in work function type sensors: the carbonate – carbon dioxide system. Sens Actuators B. 1999.57:115–119.

    Article  Google Scholar 

  59. Ostrick B, Pohle R, Fleischer M, Meixner H. TiN in work function type sensors: a stable ammonia sensitive material for room temperature operation with low humidity cross sensitivity. Sens Actuators B. 2000;68:234–239.

    Article  Google Scholar 

  60. Over H, Kim YD, Seitsonen AP, Wendt S, Lundgren E, Schmid M, Varga P, Morgante A, Ertl G. Atomic-Scale Structure and Catalytic Reactivity of the RuO2(110) Surface. Science. 2000;287:1474–1476. doi: 10.1126/science.287.5457.1474.

    Article  CAS  Google Scholar 

  61. Persson P, Lunell S, Ojamäe L. Quantum-chemical prediction of the adsorption conformations and dynamics at the HCOOH-covered ZnO(10-10) surfaces. Int J Quantum Chem. 2002;89:172–180. doi: 10.1002/qua.10316.

    Article  CAS  Google Scholar 

  62. Persson P, Ojamäe L. Periodic Hartree-Fock study of the adsorption of formic acid on ZnO(10-10). Chem Phys Lett. 2000;321:302–308.

    Article  CAS  Google Scholar 

  63. Petrini D, Larsson K. Electron transfer from a diamond (100) surface to an atmospheric water adlayer: A quantum mechanical study. J Phys Chem C. 2007;111:13804–13812. doi: 10.1021/jp070565i.

    Article  CAS  Google Scholar 

  64. Pillay D, Hwang GS. O2-coverage-dependent CO oxidation on reduced TiO2(110): A first principles study. J Chem Phys. 2006;125:144706. dio: 10.1063/1.12354083.

    Article  Google Scholar 

  65. Pisani C. Ab-initio approaches to the quantum-mechanical treatment of periodic systems. In: C Pisani, editors. Lecture Notes in Chemistry. Springer-Verlag, ISBN 3-540-61645-4. vol. 67, 1996. pp. 47–75.

    Google Scholar 

  66. Reetz MT, Helbig W. Size-selective synthesis of nanostructured transition metal clusters. J Am Chem Soc. 1994;116:7401–7402.

    Article  CAS  Google Scholar 

  67. Reetz MT, Helbig W, Quaiser SA, Stimming U, Breuer N, Vogel R. Visualization of Surfactants on nanostructured Palladium Clusters by a Combination of STM and High-resolution TEM. Science. 1995;267:367–369.

    Article  CAS  Google Scholar 

  68. Salamonsson A, Eriksson M, Dannetun H. Hydrogen interaction with platinum and palladium metal – insulator – semiconductor devices. J Appl Phys. 2005;98:014505-1–014505-9.

    Google Scholar 

  69. Salomonsson A, Petoral Jr RM, Uvdal K, Aulin C, Käll P-O, Ojamäe L, Strand M, Sanati M, Lloyd Spetz A. Nanocrystalline ruthenium oxide and ruthenium in sensing applications – an experimental and theoretical study. J Nanoparticle Res. 2006;8:899–910. doi: 10.1007/s11051-005-9058-1.

    Article  CAS  Google Scholar 

  70. Schalwig J, Kreisl P, Ahlers S, Müller G. Response mechanism of SiC-based MOS Field-Effect gas sensors. IEEE Sens J. 2002;2(5):394–402.

    Article  CAS  Google Scholar 

  71. Scharnagel K, Eriksson M, Karthigeyan A, Burgmair M, Zimmer M, Eisele I. Hydrogen detection at high concentrations with stabilized palladium. Sens Actuators B. 2001;78:138–143.

    Article  Google Scholar 

  72. SenSiC AB, http://www.sensic.se/(2008-08-17).

  73. Spetz A, Armgarth M, Lundström L. Hydrogen and ammonia response of metal-silicon dioxide- silicon structures with platinum gates. J Appl Phys. 1988:64:1274–1283.

    Google Scholar 

  74. Spetz A, Helmersson U, Enquist F, Armgarth M, Lundström L. Structure and ammonia sensitivity of thin platinum or iridium gates in metal-oxide-silicon capacitors. Thin Solid Films. 1989;177:77–93.

    Article  CAS  Google Scholar 

  75. Steinhoff, G., Baur, B., Wrobel, G., Ingebrandt, S., Offenhäusser, A., Dadgar, A., Krost, A., Stutzmann M, Eickhoff, M. Recording of cell action potentials with AlGaNGaN field-effect transistors. Appl Phys Lett. 2005;86(3):033901-1–033901-3. see also Erratum. Appl Phys Lett. 2006;89:019901.

    Article  Google Scholar 

  76. Sun Q, Reuter K, Scheffler M. Hydrogen adsorption on RuO2(110): Density-functional calculations. Phys Rev B. 2004;70:235402. doi: 10.1103/PhysRevB.70.235402.

    Article  Google Scholar 

  77. Tse J. Ab initio molecular dynamics with density functional theory. Annu. Rev Phys Chem. 2002;53:249–290. doi: 10.1146/annurev physchem 53.090401.105737.

    Article  CAS  Google Scholar 

  78. Uemura Y, Taniike T, Tada M, Morikawa Y, Iwasawa Y. Switchover of reaction mechanism for the catalytic decomposition of HCOOH on a TiO2(110) surface. J Phys Chem C. 2007;111:16379–16386. doi: 10.1021/jp074524y

    Article  CAS  Google Scholar 

  79. Vuong DD, Sakai G, Shimanoe K, Yamazoe N. Hydrogen sulfide gas sensing properties on thin films derived from SnO2 sols different in grain size. Sens Actuators B. 2005;105:437–442.

    Article  Google Scholar 

  80. Wallin M, Grönbeck H, Lloyd Spetz A, Skoglundh M. Vibrational study of ammonia adsorption on Pt/SiO2. Appl Surf Sci. 2004;235:487–500. doi: 10.1016/j.apsusc.2004.03.225.

    Article  CAS  Google Scholar 

  81. Wallin M, Grönbeck H, Lloyd Spetz A, Eriksson M, Skoglundh M. Vibrational analysis of H2 and D2 adsorption on Pt/SiO2. J Phys Chem B. 2005;109:9581–9588.

    Article  CAS  Google Scholar 

  82. Wallin M, Byberg M, Grönbeck H, Skoglundh M, Eriksson M, Lloyd Spetz A. Vibrational analysis of H2 and NH3 adsorption on Pt/SiO2 and Ir/SiO2 model sensors. In Proc IEEE Sensors 2007, Atlanta, USA, Oct 28–31, 2007. pp. 1315–1317.

    Google Scholar 

  83. Wang H, Schneider WF. Effects of coverage on the structures, energetics, and electronics of oxygen adsorption on RuO2(110). J Chem Phys. 2007;127:064706 doi 10.1063/1.2752501.

    Article  Google Scholar 

  84. Weidemann O, Hermann M, Steinhoff G, Wingbrant H, Lloyd Spetz A, Stutzmann M, Eickhoff M. Influence of surface oxides on hydrogen-sensitive Pd:GaN Schottky diodes. Appl Phys Lett. 2003;83(4):773–775.

    Article  CAS  Google Scholar 

  85. Wendt S, Schaub R, Matthiesen J, Vestergaard E K, Wahlström E, Rasmussen MD, Thostrup P, Molina LM, Lægsgaard E, Stensgaard I, Hammer B, Besenbacher F. Oxygen vacancies on TiO2(110) and their interaction with H2O and O2: A combined high-resolution STM and DFT study. Surf Sci. 2005;598:226–245. doi: 10.1016/j.susc.2005.08.041.

    Article  CAS  Google Scholar 

  86. Wingbrant H, Svenningstorp H, Kubinski DJ, Visser JH, Andersson M, Unéus L, Löfdahl M, Lloyd Spetz A. MISiC-FET NH3 sensors for SCR control in exhaust and flue gases. In: CA Grimes, EC Dickey, editors. Stevenson Ranch, Ca, USA: Encyclopedia of Sensors, American Scientific Publishers; 2006. vol 6, pp. 205–218.

    Google Scholar 

  87. Wurtzinger O, Reinhardt G. CO-sensing properties of doped SnO2 sensors in H2-rich gases. Sens Actuators B. 2004;103:104–110.

    Article  Google Scholar 

  88. Yoshimoto M, Takagi S, Umemura Y, Hada M, Nakatsuji H. Theoretical study on the decomposition of HCOOH on a ZnO(10-10) surface. J Catalysis. 1998;173:53–63.

    Article  CAS  Google Scholar 

  89. Zangooie S, Arwin H, Lundström I and Lloyd Spetz A. Ozone Treatment of SiC for Improved Performance of Gas Sensitive Schottky Diodes. Mat Sci Forum. 2000;338–342:1085–1088

    Google Scholar 

  90. Zhanpeisov NU, Fukumura H. Oxygen vacancy formation on rutile TiO2(110) and its interaction with molecular oxygen: A theoretical density functional theory study. J Phys Chem C. 2007;111:16941–16945. doi: 10.1021/jp074869g.

    Article  CAS  Google Scholar 

  91. Zhou Z, Zhao J, Chen Y, von Ragué Schleyer P, Chen Z. Energetics and electronic structures of AlN nanotubes/wires and their potential application as ammonia sensors. Nanotechnology. 2007;18:424023 (7 pp). doi: 10.1088/0957-4484/18/42/424023.

    Article  Google Scholar 

  92. Åbom AE, Haasch RT, Hellgren N, Finnegan N, Hultman L, Eriksson M. Characterization of the metal-insulator interface of field-effect chemical sensors. J Appl Phys. 2003;93(12):9760–9768.

    Article  Google Scholar 

  93. Åbom A E, Persson P, Hultman L, Eriksson M. Influence of gate metal film growth parameters on the properties of gas sensitive field-effect devices. Thin Solid Films. 2002;409:233–242.

    Article  Google Scholar 

Download references

Acknowledgments

Grants are acknowledged from the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Lloyd Spetz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Spetz, A.L., Skoglundh, M., Ojamäe, L. (2009). FET Gas-Sensing Mechanism, Experimental and Theoretical Studies. In: Comini, E., Faglia, G., Sberveglieri, G. (eds) Solid State Gas Sensing. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09665-0_4

Download citation

Publish with us

Policies and ethics