Electrical-Based Gas Sensing



Metal oxides represent an assorted and appealing class of materials whose properties cover the entire range from metals to semiconductors and insulators and almost all aspects of material science and physics including superconductivity and magnetism. In the field of chemical sensing, for more than five decades it has been known that the electrical conductivity of semiconductor varies with the composition of the gas atmosphere surrounding them [17].

The first generation of commercial devices was prepared in the 1960s by Taguchi in Japan. They were made of SnO2 prepared by thick-film technology and employed in the warning of possible leaks of explosive gases. This was and is of major importance in densely built-up Japanese cities characterized by wooden houses and widespread gas furnaces. Taguchi established Figaro Engineering Inc., which remains today the major manufacturer of gas sensors.

Since then, the need of cheap, small, low-power-consuming and reliable solid-state...


Metal Oxide Pulse Laser Deposition Space Charge Region Electrochemical Potential Sensor Conductance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Advani GN, Komen Y, Hasenkopf J, Jordan AG. Improved performance of SnO2 thin-film gas sensors due to gold diffusion. Sensor Actuat B. 1981;2:139–147.Google Scholar
  2. 2.
    Advani GN, Nanis N. Effects of humidity on hydrogen-sulfide detection by SnO2 solid-state gas sensors. Sensor Actuat B. 1981;2:201–206.Google Scholar
  3. 3.
    Ahlers S, Müller G, Doll T. A rate equation approach to the gas sensitivity of thin film metal oxide materials. Sensor Actuat B. 2005;107:587–599.Google Scholar
  4. 4.
    Althainz P. Multisensor microsystem for contaminants in air. Sensor Actuat B. 1996;33:72–76.Google Scholar
  5. 5.
    Althainz P, Dahlke A, Frietsch-Klarhof M, Goschnick J, Ache HJ. Reception tuning of gas-sensor microsystems by selective coatings. Sensor Actuat B. 1995;24:366.Google Scholar
  6. 6.
    Althainz P, Dahlke A, Goschnick J, Ache HJ. Low-temperature deposition of glass membranes for gas sensors. Thin Solid Films. 1994;241:344–347.Google Scholar
  7. 7.
    Anothainart K, Burgmair A, Karthigeyan A, Zimmer M, Eisele I. Light enhanced NO2 gas sensing with tin oxide at room temperature: conductance and work function measurements. Sensor Actuat B. 2003;93:580–584.Google Scholar
  8. 8.
    Ansari SG, Boroojerdian P, Kulkarni S, Sinkar SR, Karekar RN, Aiyer RC. Effect of thickness on H2 gas sensitivity of SnO2 nanoparticle-based thick film resistors. J Mater Sci Mater Electron. 1996;7:267–270.Google Scholar
  9. 9.
    Barsan N, Schweizer-Berberich M, Gopel W. Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius J Anal Chem. 1999;365:287–304.Google Scholar
  10. 10.
    Barsan N, Weimar U. Conduction model of metal oxide gas sensors. J Electroceram. 2001;7:143–167.Google Scholar
  11. 11.
    Barsan N, Weimar U. Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J Phys-Condens Mat. 2003;15:R813–R839.Google Scholar
  12. 12.
    Batzill M, Diebold U. The surface and materials science of tin oxide. Prog Surf Sci 2005;79:47–154.Google Scholar
  13. 13.
    Becker T, Ahlers S, Bosch-von Braunmuhl C, Muller G, Kiesewetter O. Gas sensing properties of thin- and thick-film tin-oxide materials. Sensor Actuat B. 2001;77: 55–61.Google Scholar
  14. 14.
    Bickley RI. Photoadsorption and photodesorption at gas solid interface. John Wiley & Sons; 1997.Google Scholar
  15. 15.
    Bogdanov P, Ivanovskaya M, Comini E, Faglia G, Sberveglieri G. Effect of nickel ions on sensitivity of In2O3 thin film sensors to NO2. Sensor Actuators B. 1999;57:153–158.Google Scholar
  16. 16.
    Bogner M, Fuchs A, Scharnagl K, Winter R, Doll T, Eisele I. Electrical field impact on the gas adsorptivity of thin metal oxide films. Appl Phys Lett. 1998;17:2524–2526.Google Scholar
  17. 17.
    Brattain WH, Bardeen J. Surface properties of germanium. Bell Syst Tech J. 1953;32:1–41.Google Scholar
  18. 18.
    Bube RH. Photoelectronic properties of semiconductors. Cambridge University Press; 1992.Google Scholar
  19. 19.
    Bush MB. Modelling of nanophase materials. Mater. Sci. Eng. 1993;A161:127–134.Google Scholar
  20. 20.
    Cameron D, Holliday R, Thompson D. Gold's future role in fuel cell systems. J Power Sources. 2003;118:298–303.Google Scholar
  21. 21.
    Chai CC, Peng J, Yan BP. Preparation and gas-sensing properties of alpha-Fe2O3 thin-films. J Electron Mater. 1995;24:799–804.Google Scholar
  22. 22.
    Chambon L, Maleysson C, Pauly A, Germain JP, Demarne V, Grisel A. Investigation for NH3 gas sensing applications, of the Nb2O5 semiconducting oxide in the presence of interferent species such as oxygen and humidity. Sensor Actuat B. 1997;45:107–114.Google Scholar
  23. 23.
    Chen Y, Cui X, Zhang K, Pan D, Zhang S, Wang B, How JG. Bulk-quantity synthesis and self-catalytic VLS growth of SnO2 nanowires by lower-temperature evaporation. Chem Phys Lett. 2003;369:16–20.Google Scholar
  24. 24.
    Cheong H, Choi J, Kim HP, Kim J, Churn G. The role of additives in tin dioxide-based gas sensors. Sensor Actuat B. 1991;9:227–231.Google Scholar
  25. 25.
    Choi YG, Sakai G, Shimanoe K, Miura N, Yamazoe N. Wet process-prepared thick films of WO3 for NO2 sensing. Sensor Actuat B. 2003;95:258–265.Google Scholar
  26. 26.
    Chu XF, Siciliano P. CH3SH-sensing characteristics of LaFeO3 thick-film prepared by co-precipitation method. Sensor Actuat B. 2003;94:197–200.Google Scholar
  27. 27.
    Chung YK, Kim MH, Hum WS, Lee HS, Song JK, Choi SC, Yi KM, Lee MJ, Chung KW. Gas sensing properties of WO3 thick film for NO2 gas dependent on process condition. Sensor Actuat B. 1999;60:267–249.Google Scholar
  28. 28.
    Comini E, Baratto C, Fagila, G, Ferroni M, Vomiero A, Sberveglier, G. Quasi-one dimensional metal oxide semiconductor: preparation, characterization and application as chemical sensors. Progress in Materials Science. 2008, In Press, Accepted Manuscript, Available online 10 July 2008 doi: 10.1016/j.pmatsci.2008.06.003.Google Scholar
  29. 29.
    Comini E, Faglia G, Sberveglieri G. UV light activation of tin oxide thin films for NO2 sensing at low temperatures. Sensor Actuat B. 2001;78:73–77.Google Scholar
  30. 30.
    Comini E, Faglia G, Sberveglieri G, Cantalini C, Passacantando M, Santucci S, Li Y, Wlodarski W, Qu W. Carbon monoxide response of molybdenum oxide thin films deposited by different techniques. Sensor Actuat B. 2000;68:168–174.Google Scholar
  31. 31.
    Comini E, Faglia G, Sberveglieri G, Pan ZW, Wang ZL. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett 2002;81: 1869–1871.Google Scholar
  32. 32.
    Comini E, Sberveglieri G, Ferroni M, Guidi V, Frigeri C, Boscarino D. Production and characterization of titanium and iron oxide nano-sized thin films. J Mater Res. 2001;16:1559–1564.Google Scholar
  33. 33.
    Cox DF, Fryberger TB, Semancik S. Oxygen vacancies and defect electronic states on the SnO2(110) 1 × 1 surface. Phys Rev B. 1988;38:2072–2083.Google Scholar
  34. 34.
    D’Amico A, Di Natale C. A contribution on some basic definition of sensors properties. IEEE Sens J. 2001;1:183–190.Google Scholar
  35. 35.
    Dang HY, Wang J, Fan SS. The synthesis of metal oxide nanowires by directly heating metal samples in appropriate oxygen atmospheres. Nanotechnology. 2003;14:738–741.Google Scholar
  36. 36.
    Diebold U. The surface science of titanium dioxide. Surf Sci Rep. 2003;48:53.Google Scholar
  37. 37.
    Dieguez A, Vila A, Cabot A, Romano-Rodriguez A, Morante JR, Kappler J, Barsan N, Weimar U, Gopel W. Influence on the gas sensor performances of the metal chemical states introduced by impregnation of calcinated SnO2 sol-gel nanocrystals. Sensor Actuat B. 2000;68:94–99.Google Scholar
  38. 38.
    Dolbec R, El Khakani MA, Serventi AM, Trudeau M, Saint-Jacques RG. Microstructure and physical properties of nanostructured tin oxide thin films grown by means of pulsed laser deposition. Thin Solid Films. 2002;419:230–236.Google Scholar
  39. 39.
    Dominguez JE, Pan XQ, Fu L, Van Rompay PA, Zhang Z, Nees JA, Pronko PP. Epitaxial SnO2 thin films grown on ((1)/012) sapphire by femtosecond pulsed laser deposition. J Appl Phys. 2002;91:1060–1065.Google Scholar
  40. 40.
    Dutronc P, Lucat C, Menil F, Loesch M, Horrillo MC, Sayago I, Gutierrez J, de Agapito JA. A potentially selective methane sensor-based on the differential conductivity responses of Pd-doped and Pt-doped tin oxide thick layers. Sensor Actuat B. 1993;16:384–389.Google Scholar
  41. 41.
    Ehrmann S. Automated cooking and frying control using gas sensor microarray. Sensor Actuat B. 1999;66:43–45.Google Scholar
  42. 42.
    Faglia G, Comini E, Cristalli A, Sberveglieri G, Dori L. Very low power consumption micromachined CO sensors. Sensor Actuat B. 1999;55:140–146.Google Scholar
  43. 43.
    Faglia G, Comini E, Sberveglieri G, Rella R, Siciliano P, Vasanelli L. Square and collinear four probe array and Hall measurements on metal oxide thin film gas sensors. Sensor Actuat B. 1998;53:69–75.Google Scholar
  44. 44.
    Fan Z, Jia GL. Gate-refreshable nanowires chemical sensors. Appl Phys Lett. 2005;86:123510.Google Scholar
  45. 45.
    Fang YK, Lee JJ. A tin oxide thin-film sensor with high ethanol sensitivity. Thin Solid Films. 1989;169:51–56.Google Scholar
  46. 46.
    Ferroni M, Guidi V, Martinelli G, Comini E, Sberveglieri G, Vomiero A, Della Mea G. Selective sublimation processing of a molydbelum-tungsten mixed oxide thin film. J Vac Sci Technol B. 2003;21:1442–1448.Google Scholar
  47. 47.
    Ferroni M, Guidi V, Martinelli G, Faglia G, Nelli P, Sberveglieri G. Characterization of a nanosized TiO2 gas sensor. Nanostruct Mater. 1996;7:709–718.Google Scholar
  48. 48.
    Frank J, Fleischer M, Meixner H. Electrical doping of gas-sensitive, semiconducting Ga2O3 thin films. Sensor Actuat B. 1996;34:373–377.Google Scholar
  49. 49.
    Frietsch M. CuO catalytic membrane as selectivity trimmer for metal oxide gas sensors. Sensor Actuat B. 2000;65:379–381.Google Scholar
  50. 50.
    Gaidi M, Chenevier B, Labeau M. Electrical properties evolution under reducing gaseous mixtures (H2, H2S, CO) of SnO2 thin films doped with Pd/Pt aggregates and used as polluting gas sensors. Sensor Actuat B. 2000;62:43–48.Google Scholar
  51. 51.
    Galatsis K, Li YX, Wlodarski W, Comini E, Sberveglieri G, Cantalini C, Santucci S, Passacantando M. Comparison of single and binary oxide MoO3, TiO2 and WO3 sol-gel gas sensors. Sensor Actuat B. 2002;83:276–280.Google Scholar
  52. 52.
    Gardner JW. A diffusion–reaction model of electrical conduction in tin oxide gas sensors. Semicond Sci Tech 1989;4:345–350.Google Scholar
  53. 53.
    Garzella C, Comini E, Bontempi E, Depero LE, Frigeri C, Sberveglieri G. Sol-gel TiO2 and W/TiO2 nanostructured thin films for control of drunken driving. Sensor Actuat B. 2002;83:230–237.Google Scholar
  54. 54.
    Geistlinger H. Electron theory of thin-film gas sensors. Sensor Actuat B. 1993;17:47–60.Google Scholar
  55. 55.
    Geistlinger H, Eisele I, Flietner B, Winter R. Dipole- and charge transfer contributions to the work function change of semiconducting thin films: experiment and theory. Sensor Actuat B. 1996;34:499–505.Google Scholar
  56. 56.
    Gleiter H. Materials with ultrafine microstructures: retrospective and perspectives. Nanostruct Mater. 1992;1:1–19.Google Scholar
  57. 57.
    Gleiter H. Nanostructured materials: basic concepts and microstructure. Acta Mater. 2000;48:1–29.Google Scholar
  58. 58.
    Gluhoi AC, Lin SD, Nieuwenhuys BE. The beneficial effect of the addition of base metal oxides to gold catalysts on reactions relevant to air pollution abatement. Catal Today. 2004;90:175–181.Google Scholar
  59. 59.
    Gopel W, Shierbaum KD, Shmeisser D, Wiemhofer HD. Prototype chemical sensors for the selective detection of O2 and NO2 in gases. Sensor Actuat B. 1989;17:377.Google Scholar
  60. 60.
    Göpel W. Ultimate limits in the miniaturization of chemical sensors. Sensor Actuat A. 1996;56:83–102.Google Scholar
  61. 61.
    Goschnick J, Natzeck C, Sommer M, Zudock F. Depth profiling of non-conductive oxidic multilayers with plasma-based SNMS in HF-mode. Thin Solid Films. 1998;332:215–219.Google Scholar
  62. 62.
    Guidi V, Boscarino D, Casarotto L, Comini E, Ferroni M, Martinelli G, Sberveglieri G. Nanosized Ti-doped MoO3 thin films for gas-sensing application. Sensor Actuat B. 2001;77:555–560.Google Scholar
  63. 63.
    Guidi V, Butturi MA, Carotta MC, Cavicchi B, Ferroni M, Malagu C, Martinelli G, Vincenzi D, Sacerdoti M, Zen M. Gas sensing through thick film technology. Sensor Actuat B. 2002;84:72–77.Google Scholar
  64. 64.
    Guidi V, Cardinali G, Dori L, Faglia G, Ferroni M, Martinelli G, Nelli P, Sberveglieri G. Thin film gas sensor implemented on low-power consumption micromachined silicon structure. Sensor Actuat B. 1998;49:88–92.Google Scholar
  65. 65.
    Guidi V, Martinelli G, Schiffrer G, Vomiero A, Scian C, Della Mea G, Comini E, Ferroni M, Sberveglieri G. (2005) Selective sublimation processing of thin films for gas sensing. Sensor Actuat B. 1998;108:15–20.Google Scholar
  66. 66.
    Haeusler A, Meyer JU. A novel thick film conductive type CO2 sensor. Sensor Actuat B. 1996;34:388–395.Google Scholar
  67. 67.
    Hahn SH, Barsan N, Weimar U, Ejakov SG, Visser JH, Soltis RE. CO sensing with SnO2 thick film sensors: role of oxygen and water vapour. Thin Solid Films. 2003;436:17–24.Google Scholar
  68. 68.
    Haruta M, Souma Y. Copper, silver and gold in catalysis. Catal Today 1997;36:153–166.Google Scholar
  69. 69.
    Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B. Low-temperature oxidation of CO over gold supported on TiO2, alpha-Fe2O3, and Co3O4. J Catal 1993;144:175–192.Google Scholar
  70. 70.
    Haruta M, Yamada N, Kobayashi T, Iijima S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon-monoxide. J Catal 1989;115:301–309.Google Scholar
  71. 71.
    Heiland G, Kohl D. Physical and chemical aspects of oxidic semiconductor gas sensors. In: Seiyama T, editors. Chemical sensor technology. Tokyo: Kodansha; 1988. vol. 1.Google Scholar
  72. 72.
    Hellmich W, Müller G, Bosch-v.Braunmühl C, Doll T, Eisele I. Field-effect-induced gas sensitivity changes in metal oxides. Sensor Actuat B. 1997;43:132–139.Google Scholar
  73. 73.
    Henderson MA, Epling WS, Perkins CL, Peden CHF, Diebold U. Interaction of molecular oxygen with the vacuum annealed TiO2(110) Surface: molecular and dissociative channels. J Phys Chem B. 1999;103(25):5328–5337.Google Scholar
  74. 74.
    Henrich VE, Cox PA. The surface science of metal oxides. Cambridge: University Press; 1994.Google Scholar
  75. 75.
    Hoefer U, Boéttner H, Felske A, Kuéhner G, Steiner K, Sulz G. Thin-film SnO2 sensor arrays controlled by variation of contact potential a suitable tool for chemometric gas mixture analysis in the TLV range. Sensor Actuat B. 1997;44:429–433.Google Scholar
  76. 76.
    Hoefer U, Boéttner H, Wagner E, Kohl C. Highly sensitive NO2 sensor device featuring a JFET-like transducer mechanism. Sensor Actuat B. 1998;47:213–217.Google Scholar
  77. 77.
    Hoefer U, Steiner K, Wagner E. Contact and sheet resistances of SnO2 thin films from transmission-line-measurements. Sensor Actuat B. 1995;26/27:59–63.Google Scholar
  78. 78.
    Hoflund GB, Gardner SD, Schryer DR, Upchurch BT, Kielin EJ. Au/MnOx catalytic performance-characteristics for low-temperature carbon-monoxide oxidation Appl Catal B. 1995;6:117–126.Google Scholar
  79. 79.
    Hu J, Bando Y, Liu Q, Golberg D. Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons. Adv Funct Mater 2003;13:493–496.Google Scholar
  80. 80.
    Huck R, Bottger U, Kohl D, Heiland G. Spillover effects in the detection of H2 and CH4 by sputtered SnO2 films with Pd and PdO deposits. Sensor Actuat B. 1989;17:355–359.Google Scholar
  81. 81.
    Iizuka Y, Fujiki H, Yamauchi N, Chijiiwa T, Arai S, Tsubota S, Haruta M. Adsorption of CO on gold supported on TiO2 . Catal Today 1997;36:115–123.Google Scholar
  82. 82.
    Imawan C, Solzbacher F, Steffes H, Obermeier E. Gas-sensing characteristics of modified-MoO3 thin films using Ti-overlayers for NH3 gas sensors. Sensor Actuat. 2000;64:193–197.Google Scholar
  83. 83.
    Jin CJ, Yamazaki T, Shirai Y, Yoshizawa T, Kikua T, Nakatani N, Takeda H. Dependence of NO2 gas sensitivity of WO3 sputtered films on film density. Thin Solid Films 2005;474:255–260.Google Scholar
  84. 84.
    Kılıç Ç, Zunger A. Origins of coexistence of conductivity and transparency in SnO2. Phys Rev Lett 2002;88:095501–095504.Google Scholar
  85. 85.
    Kim CK, Choi SM, Noh IH, Lee JH, Hong C, Chae HB, Jang GE, Park HD. A study on thin film gas sensor based on SnO2 prepared by pulsed laser deposition method. Sensor Actuat B. 2001;77:463–467.Google Scholar
  86. 86.
    Klumper-Westkamp H, Beling S, Mehner A, Hoffmann F, Mayr P. Semiconductor TiO2 gas sensor for controlling nitrocarburizing processes. Met Sci Heat Treat 2004;46(7–8):305–309.Google Scholar
  87. 87.
    Kohl D The role of noble-metals in the chemistry of solid-state gas sensors. Sensor Actuat B. 1990;1:158–165.Google Scholar
  88. 88.
    Kolmakov A, Moskovits M. Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures Annu. Rev. Mater. Res. 2004;34:151–180.Google Scholar
  89. 89.
    Kolmakov A, Zhang Y, Cheng G, Moskovits M. Detection of CO and O2 using tin oxide nanowire sensors. Adv Mater. 2003;15:997.Google Scholar
  90. 90.
    Kronik L, Shapira Y (1999). Surface photovoltage phenomena: theory, experiment, and applications. Surf Sci Rep 37:1–206.Google Scholar
  91. 91.
    Lampe U, Muller J. Thin-film oxygen sensors made of reactively sputtered ZnO. Sensor Actuat B. 1989;18:269–284.Google Scholar
  92. 92.
    Law M, Kind H, Messer B, Kim F, Yang PD. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew Chem Int Ed 2002;41:2405–2408.Google Scholar
  93. 93.
    Li C, Zhang DH, Liu XL, Han S, Tang T. In2O3 nanowires as chemical sensors. Appl Phys Lett 2003;82:1613–1615.Google Scholar
  94. 94.
    Li Y, Wlodarski W, Qu W. Carbon monoxide response of molybdenum oxide thin films deposited by different techniques. Sensor Actuat B. 2000;68:168–174.Google Scholar
  95. 95.
    Lieber CM, Wang ZL. Nanowires as building blocks for bottom-up nanotechnology. MRS BULLETIN 2007;32:99–104.Google Scholar
  96. 96.
    Liu Y, Zhu W, Tan OK, Shen Y. Structural and gas sensing properties of ultrafine Fe2O3 prepared by plasma enhanced chemical vapor deposition. Mater Sci Eng B. 1997;47:171–176.Google Scholar
  97. 97.
    Lu JG, Chang P, Fan Z. Quasi-one-dimensional metal oxide materials—synthesis, properties and applications. Mater. Sci. Eng. R. 2006;52:49–91.Google Scholar
  98. 98.
    Luca D. Preparation of TiOx thin films by reactive pulsed-laser ablation. J Optoelectron Adv M. 2005;7:625–630.Google Scholar
  99. 99.
    Lüth H. Surfaces and interfaces of solid materials. 3rd ed. Berlin: Springer; 1988.Google Scholar
  100. 100.
    Maccagnani P, Angelucci R, Pozzi P, Dori L, Parisini A, Bianconi M, Benedetto G. Thick porous silicon thermo-insulating membranes. Sensor Mater. 1999;11: 131–147.Google Scholar
  101. 101.
    Mädler L, Kammler HK, Mueller R, Pratsinis SE. Controlled synthesis of nanostructured particles by flame spray pyrolysis. J Aerosol Sci. 2002;33:369–389.Google Scholar
  102. 102.
    Mädler L, Pratsinis SE. Bismuth oxide nanoparticles by flame spray pyrolysis. J Am Ceram Soc 2002;85:1713–1718.Google Scholar
  103. 103.
    Madou MJ, Morrison SR. Chemical sensing with solid state devices. Academic Press Inc.: San Diego; 1989.Google Scholar
  104. 104.
    Martel R, Schmidt T, Shea HR, Hertel T, Avouris P. Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett. 1998;73:2447–2449.Google Scholar
  105. 105.
    Menzel R, Goschinick J. Gradient gas sensor microarrays for on-line process control- a new dynamic classification model for fast and reliable air quality assessment. Sensor Actuat B. 2000;68:115–122.Google Scholar
  106. 106.
    Mönch W. Semiconductor surfaces and interfaces. 3rd ed. Springer: Berlin; 2001.Google Scholar
  107. 107.
    Montmeat P, Pijolat C, Tournier G, Viricelle JP. The influence of a platinum membrane on the sensing properties of a tin dioxide thin film. Sensor Actuat B. 2002;84:148–159.Google Scholar
  108. 108.
    Morrison SR. The chemical physics of surfaces. Plenum Press: New York; 1978.Google Scholar
  109. 109.
    Morrison SR. Selectivity in semiconductor gas sensors. Sensor Actuat. 1987;12:425–440.Google Scholar
  110. 110.
    Müller R, Lange E. Multidimensional sensor for gas-analysis. Sensor Actuat. 1986;9:39–48.Google Scholar
  111. 111.
    Nanto H, Minami T, Takata S. Zinc-oxide thin-film ammonia gas sensors with high-sensitivity and excellent selectivity. J Appl Phys 1986;60:482–484.Google Scholar
  112. 112.
    Nelli P, Faglia G, Sberveglieri G, Cereda E, Gabetta G, Dieguez A, Romano-Rodriguez A, Morante JR. The aging effect on SnO2-Au thin film sensors: electrical and structural characterization. Thin Solid Films 2000;371:249–253.Google Scholar
  113. 113.
    Nicoletti S, Dori L, Cardinali GC, Parisini A. Gas sensors for air quality monitoring: realisation and characterisation of undoped and noble metal-doped SnO thin sensing films deposited by the pulsed laser ablation. Sensor Actuat B. 1999;60:90–96.Google Scholar
  114. 114.
    Ohtomo A, Tsukazaki A. A pulsed laser deposition of thin films and superlattices based on ZnO semiconductor. Sci Technol. 2005;20:S1–S12.Google Scholar
  115. 115.
    Orton JW, Goldsmith BJ, Chapman JA, Powell MJ. The mechanism of photoconductivity in polycristalline cadmium sulphide layers. J Appl Phys. 1982;53:1602–1614.Google Scholar
  116. 116.
    Orton JW, Powell MJ. The Hall effect in polycristalline and powdered semiconductors. Rep. Prog Phys. 1980;43:1265–1306.Google Scholar
  117. 117.
    Ostrick B, Fleischer M, Meixner H, Kohl D. Investigation of the reaction mechanisms in work function type sensors at room temperature by studies of the cross-sensitivity to oxygen and water: the carbonate-carbon dioxide system. Sensor Actuat B. 2000;68:197–202.Google Scholar
  118. 118.
    Oyabu T. Sensing characteristics of SnO2 thin-film gas sensor. J Appl Phys. 1982;53:2785–2787.Google Scholar
  119. 1199.
    Pan QY, Xu JQ, Dong XW, Zhang JP. Gas-sensitive properties of nanometer-sized SnO2. Sensor Actuat B. 2000;66:237–239.Google Scholar
  120. 120.
    Pan ZW, Dai ZR, Wang ZL. Nanobelts of semiconducting oxides. Science 2001;291:1947–1949.Google Scholar
  121. 121.
    Papadopoulos CA, Vlachos DS, Avaritsiotis JN. Comparative study of various metal-oxide-based gas-sensor architectures. Sensor Actuat B. 1996;32:61–69.Google Scholar
  122. 122.
    Park ED, Lee JS. Effects of pretreatment conditions on CO oxidation over supported Au catalysts. J Catal. 1999;186:1–11.Google Scholar
  123. 123.
    Petriz RL. Theory of photoconductivity in semiconductor films. Phys Rev. 1956;104:1508–1516.Google Scholar
  124. 124.
    Pijolat C, Riviere B, Kamionka M, Viricelle JP, Breuil P. Tin dioxide gas sensor as a tool for atmospheric pollution monitoring: problems and possibilities for improvements. J Mater Sci 2003;38:4333–4346.Google Scholar
  125. 125.
    Popp U, Herbig R, Michel G, Muller E, Oestreich C. Properties of nanocrystalline ceramic powders prepared by laser evaporation and recondensation. J Eur Chem Soc 1998;18:1153–1160.Google Scholar
  126. 126.
    Prudenziati M. Thick-film sensors. Elsevier: Amsterdam; 1994.Google Scholar
  127. 127.
    Qu W, Meyer JU. Thick-film humidity sensor based on porous MnWO4 material. Meas Sci Technol 1997;8:593–600.Google Scholar
  128. 128.
    Raiblea I, Burghardb M, Schlecht U, Yasuda A, Vossmeyer T . V2O5 nanofibres: novel gas sensors with extremely high sensitivity and selectivity to amines. Sensor Actuat B. 2005;106:730–735.Google Scholar
  129. 129.
    Ramamoorthy R, Kennedy MK, Nienhaus H, Lorke A, Kruis FE, Fissan H. Surface oxidation of monodisperse SnOx nanoparticles. Sensor Actuat B. 2003;88:281–285.Google Scholar
  130. 130.
    Rao GST, Rao DT. Gas sensitivity of ZnO based thick film sensor to NH3 at room temperature. Sensor Actuat B. 1999;55:166–169.Google Scholar
  131. 131.
    Ruiz A, Calleja A, Espiell F, Cornet A, Morante JR. Nanosized Nb-TiO2 gas sensors derived from alkoxides hydrolization. IEEE Sens J. 2003;3:189–194.Google Scholar
  132. 132.
    Ruiz AM, Sakai G, Cornet A, Shimanoe K, Morante JR, Yamazoe N. Cr-doped TiO2 gas sensor for exhaust NO2 monitoring. Sensor Actuat B. 2003;93:509–518.Google Scholar
  133. 133.
    Sahm T, Mädler L, Gurlo A, Barsan N, Pratsinis SE, Weimar U. Flame spray synthesis of tin dioxide nanoparticles for gas sensing. Sensor Actuat B. 2004;98:148–153.Google Scholar
  134. 134.
    Sakai G, Matsunaga N, Shimanoe K, Yamazoe N. Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor. Sensor Actuat B. 2001;80:125–131.Google Scholar
  135. 135.
    Samson S, Fonstad CG. Defect structure and electronic donor levels in stannic oxide crystal. J Appl Phys. 44:4618–4621.Google Scholar
  136. 136.
    Sauvan M, Pijolat C. Selectivity improvement of SnO2 films by superficial metallic films. Sensor Acutat B. 1999;58:295–301.Google Scholar
  137. 137.
    Sberveglieri G. Classical and novel techniques for the preparation of SnO2 thin-film gas sensors. Sensor Actuat B. 1992;6:239–247.Google Scholar
  138. 138.
    Sberveglieri G, Faglia G, Groppelli S, Nelli P. Methods for the preparation of NO, NO2 and H2 sensors based on tin oxide thin-films, grown by means of the rf magnetron sputtering technique. Sensor Actuat B. 1992;8:79–88.Google Scholar
  139. 139.
    Sberveglieri G, Faglia G, Groppelli S, Nelli P, Taroni A. A novel PVD technique for the preparation of SnO2 thin-films as C2H5OH sensors. Sensor Actuat B. 1992;7:721–726.Google Scholar
  140. 140.
    Sberveglieri G, Hellmich W, Muéller G. Silicon hotplates for metal oxide gas sensor elements. Microsyst Technol 1997;3:183–190.Google Scholar
  141. 141.
    Schweizer-Berberich M, Strathman S, Weimar U, Sharma R, Seube A, Peyre-Lavigne A, Gopel W. Strategies to avoid VOC cross-sensitivity of SnO2-based CO sensors. Sensor Actuat B 1999;58:318–324.Google Scholar
  142. 142.
    Seth M, Kohl CD, Fleischer M, Meixner H. A selective H2 sensor implemented using Ga2O3 thin-films which are covered with a gas-filtering SiO2 layer. Sensor Actuat B. 1996;36:297–302.Google Scholar
  143. 143.
    Seto JYW. The electrical properties of polycristalline silicon films. J Appl Phys 1975;46:5247–5254.Google Scholar
  144. 144.
    Shapira Y, Cox SM, Lichtman D. Photodesorption from powder zinc oxide. Surf Sci. 1975;50:503–514.Google Scholar
  145. 145.
    Shapira Y, Cox SM, Lichtman D. Cemisorption, photodesorption and conductivity measurements on ZnO surfaces. Surf Sci. 1976;54:43–59.Google Scholar
  146. 146.
    Shapira Y, McQuistan RB, Lichtman D. Relation between photodesorption and surface conductivity in ZnO. Phys Rev B. 1977;15(4):2163–2169.Google Scholar
  147. 147.
    Shukla S, Agrawal R, Cho HJ, Seal S, Ludwig L, Parish C. Effect of ultraviolet radiation exposure on room-temperature hydrogen sensitivity of nanocrystalline doped tin oxide sensor incorporated into microelectromechanical systems device. J Appl Phys. 2005;97:54307.Google Scholar
  148. 148.
    Siegel RW. Synthesis and properties of nanophase materials. Mater Sci Eng A. 1993;168:189–197.Google Scholar
  149. 149.
    Sinkkonen J. DC conductivity of a random barrier network. Phys Status Solid B. 1980;102:621–627.Google Scholar
  150. 150.
    Solis JL, Saukko S, Kish LB, Granqvist CG, Lantto V. Nanocrystalline tungsten oxide thick-films with high sensitivity to H2S at room temperature. Sensor Actuat B. 2001;77:316–321.Google Scholar
  151. 151.
    Solisa JL, Saukko S, Kisha L, Granqvista CG, Lantto V. Semiconductor gas sensors based on nanostructured tungsten oxide. Thin Solid Films. 2001;391:255–260.Google Scholar
  152. 152.
    Sunu SS, Prabhu E, Jayaraman V, Gnanasekar KI, Gnanasekaran T. Gas sensing properties of PLD made MoO3 films. Sensor Actuat. B 2003;94:189–196.Google Scholar
  153. 153.
    Sysoev V, Kiselev I, Frietsch M, Goschnick J. Temperature gradient effect on gas discrimination power of a metal-oxide thin-film sensor. Microarray Sens 2004;4:37–46.Google Scholar
  154. 154.
    Sze SM. Physics of semiconductor devices. John Wiley and sons: New York; 1981.Google Scholar
  155. 155.
    Tan OK, Cao W, Hu Y, Zhu W. Nanostructured oxides by high-energy ball milling technique: application as gas sensing materials. Solid State Ionics. 2004;172:309–316.Google Scholar
  156. 156.
    Tournier G, Pijolat C, Lalauze R, Patissier B. Selective detection of CO and CH4 with gas sensors using SnO2 doped with palladium. Sensor Actuat B. 1995;26:24–28.Google Scholar
  157. 157.
    Trinchi A, Kaciulis S, Pandolfi L, Ghantasala MK, Li YX, Wlodarski W, Viticoli S, Comini E, Sberveglieri G. Characterization of Ga2O3 based MRISiC hydrogen gas sensors. Sensor Actuat B. 2004;103:129–135.Google Scholar
  158. 158.
    Tsuda N, Nasu K, Fujimori A, Siratori K. Electronic conduction in oxides. 2nd ed. Springer: Berlin; 2000.Google Scholar
  159. 159.
    Vlachos DS, Papadopoulos CA, Avaritsiotis JN. Characterisation of the catalyst-semiconductor interaction mechanism in metal-oxide gas sensors. Sensor Acutat B. 1997;44:458–461.Google Scholar
  160. 160.
    Vomiero A, Della Mea G, Ferroni M, Martinelli G, Roncarati G, Guidi V, Comini E, Sberveglieri G. Preparation and microstructural characterization of nanosized Mo:TiO2 and Mo-W-O thin films by sputtering: tailoring of composition and porosity by thermal treatment. Mater Sci Eng B. 2003;101:216–221.Google Scholar
  161. 161.
    Wan Q, Li QH, Chen YJ, Wang TH, He XL, Li JP, Lin CL. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl Phys Lett. 2004;84: 3654–3656.Google Scholar
  162. 162.
    Wang N, Cai Y, Zhang RQ. Growth of nanowires. Mater. Sci. Eng. R. 2008;60:1–51.Google Scholar
  163. 163.
    Wang X, Yee SS, Carey WP. Transition between neck-controlled and grain-boundary-controlled sensitivity of metal-oxide gas sensors. Sensor Actuat B. 1995;24–25: 454–457.Google Scholar
  164. 164.
    Watson J. A note on the electrical characterization of solid-state gas sensors. Sensor Actuat B. 1992;8:173–177.Google Scholar
  165. 165.
    Weisz PB. Effects of electronic charge transfer between adsorbate and solid on chemisorption and catalysis. J Chem Phys. 1953;21:1531.Google Scholar
  166. 166.
    Williams DE, Pratt KFE. Theory of self-diagnostic sensor array devices using gas-sensitive resistors. J Chem Soc. 1995;91:1961–1966.Google Scholar
  167. 167.
    Williams EW, Lawor CM, Keeling AG, Gould RD. Novel room-temperature carbon-monoxide sensor utilizing rate of change of resistance in thick-films of tin oxide. Int J Electon. 1994;76:815–820.Google Scholar
  168. 168.
    Williams G, Coles GSV. Gas sensing properties of nanocrystalline metal oxide powders produced by a laser evaporation technique. J Mater Chem. 1998;8:1657–1664.Google Scholar
  169. 169.
    Wolkenstein T. Electronic processes on semiconductor surfaces during chemisorption. Plenum press: NY; 1991.Google Scholar
  170. 170.
    Xiangfeng C, Caihong W, Dongli J, Chenmou Z. Ethanol sensor based on indium oxide nanowires prepared by carbothermal reduction reaction. Chem Phys Lett. 2004;399:461–464.Google Scholar
  171. 171.
    Yamazoe N. New approaches for improving semiconductor gas sensors. Sensor Actuat B. 1991;5:7.Google Scholar
  172. 172.
    Zhang D, Li C, Han S, Liu X, Tang T, Jin W, Zhou C. Ultraviolet photodetection properties of indium oxide nanowires. Appl Phys. 2003;77:163–166.Google Scholar
  173. 173.
    Zhang D, Liu Z, Li C, Tang T, Liu X, Han S, Lei B, Zhou C. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 2004;4:1919–1924.Google Scholar
  174. 174.
    Zhang DH, Liu ZQ, Li C, Tang T, Liu XL, Han S, Lei B, Zhou CW. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 2004;4:1919–1924.Google Scholar
  175. 175.
    Zhang DJ, Li C, Liu XL, Han S, Tang T, Zhou CW. Doping dependent NH3 sensing of indium oxide nanowires. Appl Phys Lett. 2003;83:1845–1847.Google Scholar
  176. 176.
    Zhang Y, Kolmakov A, Lilach Y, Moskovits M. Electronic control of chemistry and catalysis at the surface of an individual tin oxide nanowire. J Phys Chem B. 2005;109:1923–1929.Google Scholar
  177. 177.
    Zhu BL, Zeng DW, Wu J, Song WL, Xie CS. Synthesis and gas sensitivity of In-doped ZnO nanoparticles. J Mater Electron;14:521–526.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Sensor Laboratory, CNR-INFM and Brescia UniversityItaly

Personalised recommendations