Micro-Fabrication of Gas Sensors



Gas sensors are increasingly used in the growing markets of automotive [1, 2, 3], aerospace [2, 3, 4, 5, 6, 7], and logistic [8, 9, 10] applications. Within these domains, gas sensors play important roles in providing comfort and safety or in enabling process control or smart maintenance functionalities. Future important markets are likely to emerge in the fields of safety and security [11]. With regard to the sensitivity and selectivity of gas detection these various applications require very different levels of sensor performance. Very often the different applications also impose highly varying price, size, weight, and power consumption constraints on an acceptable sensor solution. In practice, therefore, a whole range of different gas sensors and gas-sensing principles need to be employed [8, 9, 10, 11]. Although the sensitivity of gas detection is not normally a major concern, selectivity is much harder to attain. Usually selectivity is obtained at the expense of an...


Dielectric Membrane Thermal Response Time Lower Explosive Limit Heated Membrane Thermal Equivalent Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge support by the EU under the projects NANOS4 (FP6-2002-NMP-1, No. 001528) and NetGas (FP5 IST – 2001 – 37802) and to the German Ministry of Education and Research BMBF under the contracts “MISSY”, “IESSICA” and “NACHOS”.


  1. 1.
    Westbrook MH, Turner JD. Automotive sensors. Institute of Physics Publishing: Bristol and Philadelphia; ISBN 0-7503-0293-3. 1994.Google Scholar
  2. 2.
    Moos R, Müller R, Plog C, Knezevic A, Leye H, Irion E, Braunc T, Marquardt KJ, Binder K. Selective ammonia exhaust gas sensor for automotive applications. Sensor Actuat. 2002;B83:181–189.CrossRefGoogle Scholar
  3. 3.
    McGeehin P. Gas sensors for improved air quality in transportation. Sensor Rev. 2000;20:106–112.CrossRefGoogle Scholar
  4. 4.
    Hunter GW, Chen LY, Neudeck PG, Knight D, Liu CC, Wu QH, Zhou HJ, Makel D, Liu M, Rauch WA. Chemical gas sensors for aeronautic and space applications. NASA/TM—1998-208504, 1998
  5. 5.
    Kallergis KM. New fire/smoke detection and fire extinguishing systems for aircraft applications. Space Eur.2001;3:197–200.CrossRefGoogle Scholar
  6. 6.
    Kohl D, Kelleter J, Petig H. Detection of fires by gas sensors. Sens Update. 2001;9:161–223.CrossRefGoogle Scholar
  7. 7.
    Helwig A, Schulz O, Spannhake J, Sayhan I, Krenkow A, Müller G. Aircraft applications of chemical sensors: from MEMS sensors to MEMS sensor systems, invited talk. 4th AIST International Workshop on Chemical Sensors, Nagoya, Japan; 30 Nov. 2006.Google Scholar
  8. 8.
  9. 9.
    Wöllenstein J, Hartwig S, Hildenbrand J, Eberhardt A, Moreno M, Santander J, Rubio R, Fonollosa J, Fonseca L. A compact optical ethylene monitoring system. Microtechnologies for the new millenium 2007. Maspalomas, Gran Canaria, Spain; 2–4 May 2007.Google Scholar
  10. 10.
    Abad E, Zampolli S, Marco S, Scorzoni A, Mazzolai B, Juarros A, Gómez D, Elmi I, Cardinali GC, Gómez JM, Palacio F, Cicioni M, Mondini A, Becker T, Sayhan I. Flexible tag microlab development: gas sensors integration in RFID flexible tags for food logistic. Sensor Actuat B. 2007;127:2–7.CrossRefGoogle Scholar
  11. 11.
    Gardner JW, Yinon J. Electronic noses and sensors for the detection of explosives. NATO Sci Ser II Math, Phys Chem.. Dordrecht: Kluwer; ISBN 1-4020-2317-0 (hardbound) and 1-4020-2318-9 (paperback). vol. 159. 2004.Google Scholar
  12. 12.
    Moseley PT, Tofield BC. Solid state gas sensors. Adam Hilger, Bristol; 1987.Google Scholar
  13. 13.
  14. 14.
  15. 15.
    Eranna G, Joshi BC, Runthala DP, Gupta RP. Oxide materials for development of integrated gas sensors – A comprehensive review. Crit. Rev Solid State Mater Sci. 2004;29:111–188.CrossRefGoogle Scholar
  16. 16.
    Moseley PT, Norris J, Williams DE. Techniques and mechanisms in gas sensing. Adam Hilger, Bristol; 1991.Google Scholar
  17. 17.
    Sze SM. Semiconductor sensors. John Wiley & Sons; ISBN 0-471-54609-7. 1994.Google Scholar
  18. 18.
    Gardner JW, Bartlett PN. Electronic noses: principles and application. Oxford University Press: Oxford; ISBN 0-19-855955-0. 1999, p. 245.Google Scholar
  19. 19.
    Graf M, Gurlo A, Bârsan N, Weimar U, Hierlemann A. Microfabricated gas sensor systems with sensitive nanocrystalline metal-oxide films. J Nanopart Res. 2006;8:823–839.CrossRefGoogle Scholar
  20. 20.
    Bourgeois W, Romain A-C, Nicolas J, Stuetz RM. The use of sensor arrays for environmental monitoring: interests and limitations. J Environ Monit. 2003;5:852–860.CrossRefGoogle Scholar
  21. 21.
    Platt U, Stutz J. Differential optical absorption spectroscopy – principles and applications, Ser Phys Earth Space Environ. ISBN: 978-3-540-21193-8. 2008.Google Scholar
  22. 22.
    McNair HM, Miller JM. Basic gas chromatography. ISBN: 978-0-471-17261-1. 1997.Google Scholar
  23. 23.
    Eiceman GA, Karpas Z. Ion mobility spectrometry. 2nd ed. CRC Press, Taylor & Francis: Boca Raton; 2006.Google Scholar
  24. 24.
    Rubio R, Santander J, Fonseca L, Sabatér N, Gràcia I, Cané C, Udina S, Marco S. Non-selective NDIR array for gas detection. Sensor Actuat. 2007;B127:69–73.CrossRefGoogle Scholar
  25. 25.
    Graf M, Barrettino D, Baltes HP, Hierlemann A. CMOS hotplate chemical microsensors. Ser.: Microtechnol MEMS. ISBN: 978-3-540-69561-5. 2007.Google Scholar
  26. 26.
    Hierlemann A. Integrated chemical microsensor systems in CMOS technology. Ser.: Microtechnol MEMS. ISBN: 978-3-540-23782-2. 2005.Google Scholar
  27. 27.
    Wapelhorst E, Hauschild JP, Müller J. Complex MEMS: a fully integrated TOF micro mass spectrometer. Sensor Actuat 2007;A138:22–27.Google Scholar
  28. 28.
    Müller G, Friedberger A, Kreisl P, Ahlers S, Schulz O, Becker T. A MEMS toolkit for metal-oxide-based gas-sensing systems, Thin Solid Films. 2003;436:34–45.CrossRefGoogle Scholar
  29. 29.
    Sze SM. Semiconductor devices; physics and technology. John Wiley & Sons; ISBN-10: 0-471-33372-7; ISBN-13: 978-0-471-33372-2. 2001.Google Scholar
  30. 30.
    Waser R. Nanoelectronics and information technology. Wiley-VCH, ISBN 3527403639. 2003.Google Scholar
  31. 31.
    Heuberger A. Mikromechanik. Springer; ISBN 3-540-18721-9. 1989.Google Scholar
  32. 32.
  33. 33.
  34. 34.
    Bergveld, P. Thirty years of ISFETOLOGY: what happened in the past 30 years and what may happen in the next 30 years. Sensor Actuat. 2003;B88:1–20.CrossRefGoogle Scholar
  35. 35.
    Lundström I, Shirvamavan MS, Svensson C. A hydrogen-sensitive MOS field-effect transistor. Appl Phys Lett. 1975;26:55–57.CrossRefGoogle Scholar
  36. 36.
    Lundström I, Shirvamavan MS, Svensson C. A hydrogen sensitive Pd-gate MOS transistor. J Appl Phys. 1975;46:3876–3881.CrossRefGoogle Scholar
  37. 37.
    Lundström I, Spetz A, Winquist F, Ackelid U, Sundgren H. Catalytic metals and field-effect devices – a useful combination. Sensor Actuat. 1990;B1:15–20.CrossRefGoogle Scholar
  38. 38.
    Ahlers S, Müller G, Becker Th, Doll Th. Factors influencing the gas sensitivity of metal oxide materials. In: Grimes CA, Dickey EC, Pishko MV, editors. Encyclopedia of sensors. The Pennsylvania State University, University Park, USA; ISBN: 1-58883-056-X. 2005.Google Scholar
  39. 39.
    Fang Q, Chetwynd DG, Covington JA, Toh CS, Gardner JW. Micro-gas-sensor with conducting polymers. Sensor Actuat. 2002;B84:66–71.CrossRefGoogle Scholar
  40. 40.
    Helwig A, Müller G, Sberveglieri G, Faglia G. Gas sensing properties of hydrogenated amorphous silicon films. IEEE Sens J. 2007;7:1506–1512.CrossRefGoogle Scholar
  41. 41.
  42. 42.
    Schjølberg-Henriksen K, Ferber A, Schulz O, Moe S, Wang DT, Lloyd MH, Legner W, Suphan KH, Bernstein RW, Rogne H, Müller G. Sensitive and selective photo acoustic gas sensor suitable for high-volume manufacturing. Proceedings of IEEE Sensors Conference, Daegu, Korea; October 22–25, 2006.Google Scholar
  43. 43.
    Tardy P, Coulon JR, Lucat C, Menil F. Dynamic thermal conductivity sensor for gas detection. Sensor Actuat. 2004;B98:63–68.CrossRefGoogle Scholar
  44. 44.
    Miller JB. Catalytic sensors for monitoring explosive atmospheres. IEEE Sens J. 2001;1:88–93.CrossRefGoogle Scholar
  45. 45.
    Sberveglieri G, Hellmich A, Müller G. Silicon hotplates for metal oxide gas sensor elements. Microsyst Technol. 1997;3:183–190.CrossRefGoogle Scholar
  46. 46.
    Suehle JS, Cavicchi RE, Gaitan M, Semancik M. Tin oxide gas sensor fabricated using CMOS Micro hotplates and in-situ processing. IEEE Electr Device L. 1993;14: 118–120.CrossRefGoogle Scholar
  47. 47.
    Semancik S, Cavicchi RE, Kreider KG, Suehle JS, Chaparla P. Selected area deposition of multiple active films for conductometric microsensor arrays. Proc. Transducers ´95, EUROSENSORS IX, Stockholm, Sweden; 1995. pp. 831–834.Google Scholar
  48. 48.
    Semancik S, Cavicchi RE, Meier DC, Taylor CJ, Savage NO, Wheeler MC. Temperature-controlled MEMS chemical microsensors”, Proc. 1st AIST International Workshop on chemical Sensors. Nagoya; March 13, 2003.Google Scholar
  49. 49.
    Friedberger A, Kreisl P, Rose E, Müller G, Kühner G, Wöllenstein J, Böttner H. Micromechanical fabrication of robust low-power metal-oxide gas sensors. Sensor Actuat. 2003;B93:345–349.CrossRefGoogle Scholar
  50. 50.
    Spannhake J, Schulz O, Helwig A, Krenkow A, Müller G, Doll T. High-temperature MEMS heater platforms: long-term performance of metal and semiconductor heater materials. Sensors. 2006;6:405–419.CrossRefGoogle Scholar
  51. 51.
    Zeitschel A, Friedberger A, Welser W, Müller G. Breaking the isotropy of porous silicon formation by current focussing. Sensor Actuat. 1999;74:113–117.CrossRefGoogle Scholar
  52. 52.
    Düsco Cs, Vaszsonyi E, Adam M, Barsony I, Gardeniers JGE, van den Berg A. Porous silicon bulk micromachining for thermally isolated membrane formation. Proc. Eurosensors X, Leuven, Belgium; 1996. pp. 227–230.Google Scholar
  53. 53.
    Barrettino D, Graf M, Song WH, Kirstein KU, Hierlemann A, Baltes H. Hotplate-based monolithic CMOS microsystems for gas detection and material characterization for operating temperatures up to 500°C. IEEE J Solid-State Circ. 2004;39:1202–1207.CrossRefGoogle Scholar
  54. 54.
    Kreisl P, Helwig A, Friedberger A, Müller G, Obermeier E, Sotier S. Detection of hydrocarbon species using silicon MOS capacitors operated in a non-stationary temperature pulse mode. Sensor Actuat. 2005;B106:489–497.CrossRefGoogle Scholar
  55. 55.
    Kreisl P, Helwig A, Müller G, Obermeier E, Sotier S. Detection of hydrocarbon species using silicon MOS field effect transistors operated in a non-stationary temperature-pulse mode. Sensor Actuat. 2005;B106:442–449.CrossRefGoogle Scholar
  56. 56.
    Müller G, Schalwig J, Kreisl P, Helwig A, Obermeier E, Weidemann O, Stutzmann M, Eickhoff M. High-temperature operated field-effect gas sensors. In: Grimes CA, Dickey EC, Pishko MV. Editors. Encyclopedia of sensors.The Pennsylvania State University, University Park, USA. ISBN: 1-58883-056-X. 2005.Google Scholar
  57. 57.
    Spannhake J, Helwig A, Müller G, Sberveglieri G, Faglia G, Wassner T, Eickhoff M. SnO2:Sb – A new material for high-temperature MEMS heater applications – performance and limitations. Sensor Actuat. 2007;B124:421–428.CrossRefGoogle Scholar
  58. 58.
    Schjølberg-Henriksen K, Wang DT, Rogne H, Ferber A, Vogl A, Moe S, Bernstein R, Lapadatu D, Sandven K. High-resolution pressure sensor for photoacoustic gas detection, EUROSENSORS XIX, Barcelona, Spain; 11–14 Sept. 2005.Google Scholar
  59. 59.
    Brida S, Beclin S, Metivet S, Martins P,Stojanovic O. High sensitivity piezoresistive silicon microphone for aerospace applications. 5th ESA MNT Round Table, Noordwijk, The Netherlands; 3–5 October 2005.Google Scholar
  60. 60.
    Brida S, Martins P, Beclin S, Metivet S, Stojanovic O, Malhaire C. Design of bossed silicon membranes for high sensitivity microphone applications, DTIP of MEMS MOEMS, Stresa, Italy, 26–28 April 2006.Google Scholar
  61. 61.
    Sekhar PK, Akellaa S, Bhansali S. A low loss flexural plate wave (FPW) device through enhanced properties of sol–gel PZT (52/48) thin film and stable TiN-Pt bottom electrode. Sensor Actuat. 2006;A132:376–384.Google Scholar
  62. 62.
    Neuberger R. PhD thesis, Department of Experimental Semiconductor Physics II, Technical University of Munich; 2003.Google Scholar
  63. 63.
    Schulz O, Müller G, Lloyd MH, Ferber A. Impact of environmental parameters on the emission intensity of micromachined infrared sources. Sensor Actuat. 2005;A121: 172–180.Google Scholar
  64. 64.
    Spannhake J, Helwig A, Friedberger A, Müller G, Hellmich W. Resistance heating. Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, June, 2007, 10.1002/047134608X.W3223.pub2.Google Scholar
  65. 65.
    Meyer GCM, van Herwarden AW. Thermal sensors. Bristol and Philidelphia: Institute of Physics Publishing:; 1994. ISBN 0-7503-0220-8.Google Scholar
  66. 66.
    Spannhake J, Schulz O, Helwig A, Müller G, Doll T. Design, development and operational concept of an advanced MEMS IR source for miniaturized gas sensor systems. IEEE Sens. 2005;30:4. ISBN: 0-7803-9056-3/05.Google Scholar
  67. 67.
  68. 68.
  69. 69.
    Kittel Ch, Kroemer H. Thermal physics. San Francisco: W.H. Freeman & Co Ltd; ISBN-10: 0716710889, ISBN-13: 978-0716710882.Google Scholar
  70. 70.
  71. 71.
    Puers R, Reyntjens S, De Bruyker D. The NanoPirani – an extremely miniaturized pressure sensor fabricated by focused ion beam rapid prototyping. Sensor Actuat. 2002;A97 & 98:208–214.Google Scholar
  72. 72.
    Zhang FT, Tang Z, Yu J, Jin RC. A micro-Pirani vacuum gauge based on micro-hotplate technology. Sensor Actuat. 2006;A126:300–305.Google Scholar
  73. 73.
    Ahlers S,Müller G, Doll Th. A rate equation approach to the gas sensitivity of thin-film SnO2. Sensor Actuat. 2005;B107587–599.Google Scholar
  74. 74.
    Helwig A, Müller G, Sberveglieri G, Faglia G. Gas response times of nano-scale SnO2 gas sensors as determined by the moving gas outlet technique. Sensor Actuat. 2007;B126:174–180.CrossRefGoogle Scholar
  75. 75.
    Guidi V, Butturi MA, Carotta MC, Cavicchi B, Ferroni M, Malagù C, Martinelli G, Vincenzi D, Sacerdoti M, Zen M. Gas sensing through thick film technology. Sensor Actuat. 2002;B84:72–77.CrossRefGoogle Scholar
  76. 76.
    Vincenzi D, Butturi MA, Stefancich M, Malagù C, Guidi V, Carotta MC, Martinelli G, Guarnieri V, Brida S, Margesin B, Giacomozzi F, Zen M, Vasiliev AA, Pisliakov AV. Low-power thick-film gas sensor obtained by a combination of screen printing and micromachining techniques. Thin Solid Films. 2001;391:288–292.CrossRefGoogle Scholar
  77. 77.
    Epifani M, Francioso L, Siciliano P, Helwig A, Mueller G, Díaz R, Arbiol J, Morante JR. SnO2 thin films from metalorganic precursors: synthesis, characterization, microelectronic processing and gas-sensing properties. Sensor Actuat. 2007;B124:217–226.Google Scholar
  78. 78.
    Francioso L, Russo M, Taurino AM, Siciliano P. Micrometric patterning process of sol–gel SnO2, In2O3 and WO3 thin film for gas sensing applications: towards silicon technology integration. Sensor Actuat. 2006;B119:159–166.CrossRefGoogle Scholar
  79. 79.
    Semancik S, Cavicchi RE, Kreider KG, Suehle JS, Chaparala P. Selected-area deposition of multiple active films for conductometric microsensor arrays. Proc. of Transducers 95/Eurosensors IX. Norstedts Tryckeri AB, Stockholm, Sweden, 1995. pp. 831–834.Google Scholar
  80. 80.
    DiMeo F. Jr., Semancik S, Cavicchi RE, Suehle JS, Chaparala P, Tea NH. MOCVD of SnO2 on silicon microhotplate arrays for use in gas sensing applications. MRS Proc. 1995;415:231–236.Google Scholar
  81. 81.
    Cavicchi RE, Suehle JS, Kreider KG, Shomaker BL, Small JA, Gaitan M, Chaparala P. Growth of SnO2 films on micromachined hotplates. Appl. Phys. Lett. 1995;66:812–814.CrossRefGoogle Scholar
  82. 82.
    Semancik S, Cavicchi RE, Kreider KG, Suehle JS, Chaparala P. Selected-area deposition of multiple active films for conductometric microsensor arrays. Sensor Actuat. 1995;B34:209–212.Google Scholar
  83. 83.
    Comini E, Faglia G, Sberveglieri G, Pan ZW, Wang ZL. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett. 2002;81:1869–1871.CrossRefGoogle Scholar
  84. 84.
    Choi YJ, Hwang IS, Choi KJ, Park JH, Park JG. Gas sensor based on the network of SnO2 semiconducting nanowires. In: Li C, Zribi A, Nagahara L, Willander M, editors. Nanofunctional materials, nanostructures and novel devices for biological and chemical detection. Mater. Res. Soc. Symp. Proc. 951E, Warrendale, PA, 2007, pp. 08–03.Google Scholar
  85. 85.
    Meier DC, Semancik S, Button B, Strelcov E, Kolmakov A. Coupling nanowire chemiresistors with MEMS microhotplate gas sensing platforms. Appl Phys Lett. 2007;91:063118.CrossRefGoogle Scholar
  86. 86.
    Baratto C, Comini E, Faglia G, Sberveglieri G, Zha M, Zappettini A. Metal oxide nanocrystals for gas sensing. Sensor Actuat. 2005;B109:2–6.Google Scholar
  87. 87.
    Hellmich W, Müller G, Doll T, Eisele I. Field-effect-induced gas sensitivity changes in metal oxides. Sensor Actuat. 1997;B43:132–139.CrossRefGoogle Scholar
  88. 88.
    Ahlers S, Becker T, Hellmich W, Bosch-v.Braunmühl C, Müller G. Temperature- and field-effect-modulation techniques for thin-film metal oxide gas sensors. In: Doll T. editor. Advanced gas sensing: the electroadsorptive effect and related techniques. Kluwer Academic Publishers: Boston, London, Dordrecht; 2003.Google Scholar
  89. 89.
    Dalin J. Fabrication and characterisation of a novel MOSFET gas sensor. PhD thesis. Linköpings Institute of Technology, 2002.Google Scholar
  90. 90.
    Fan Z, Lu JG. Gate-refreshable nanowire chemical sensors. Appl Phys Lett. 2006;86:123510.CrossRefGoogle Scholar
  91. 91.
    Zhang Y, Kolmakov A, Lilach Y, Moskovits M. Electronic control of chemistry and catalysis at the surface of an individual tin oxide nanowire. J Phys Chem. 2005;B109: 1923–1929.Google Scholar
  92. 92.
    Arbab A, Spetz A, ul Wahab Q, Willander M, Lundström I. Chemical sensors for high temperatures based on silicon carbide. Sens Mater. 1993;4:173–185.Google Scholar
  93. 93.
    Lloyd Spetz A, Baranzahi A, Tobias P, Lundström I. High temperature sensors based on metal-insulator-silicon carbide devices. Phys Stat Sol (a). 1997;162:493–511.CrossRefGoogle Scholar
  94. 94.
    Lloyd Spetz A, Unéus L, Svenningstorp H, Tobias P, Ekedahl L-G, Larsson O, Göras A, Savage S, Harris C, Mårtensson P, Wigren R, Salomonsson P, Häggendahl B, Ljung P, Mattsson M, Lundström I. SiC based field effect gas sensors for industrial applications. Phys Stat Sol (a). 2001;185:15–25.CrossRefGoogle Scholar
  95. 95.
    Käpplinger I, Brode W, Krenkow A, Spannhake J, Müller G. High temperature silicon-on-insulator based hotplates: long term performance of platinum heater materials. Proc. AMA 2007. Nürnberg, Germany, 22- 4 May 2007.Google Scholar
  96. 96.
  97. 97.
    Schulz O, Legner W, Müller G, Schjølberg-Henriksen K, Ferber A, Moe S, Lloyd MH, Suphan K-H. Photoacoustic gas sensing microsystems. Proc. AMA 2007. Nürnberg, May 2007.Google Scholar
  98. 98.
    Helwig A, Schulz O, Sayhan I, Müller G. “Multi-criteria fire detectors for aeronautic applications. Proc. TRANSFAC, San Sebastian, Spain, September 2006. Invited talk at Global Symposium on Innovative Solutions for the Advancement of the Transport Industry/Transfac’06, San Sebastian, Spain, October 4–6, 2006.Google Scholar
  99. 99.
    Grosshandler W.L. editor. Nuisance alarms in aircraft cargo areas and critical telecommunication systems. Proc. Third NIST Fire Detector Workshop, December 4–5, 1997, NISTIR 6146, National Institute of Standards and Technology, Gaithersburg, MD, March 1998.Google Scholar
  100. 100.
    Airbus Internal Directive ABD0100, Equipment-Design General Requirements for Suppliers; Source: Airbus Documentation Office, Toulouse, Blagnac, France.Google Scholar
  101. 101.
  102. 102.
    IMOS (EU FP6);
  103. 103.
    Sayhan I, Helwig A, Becker Th, Müller G, Elmi I, Zampolli S, Cardinali GC, Padilla M, Marco S. Discontinuously operated metal oxide gas sensors for flexible tag microlab applications. IEEE Sens J. 2008;8:176–181.CrossRefGoogle Scholar
  104. 104.
    Bell AG. On the production and reproduction of sound. Am J Sci. 1880;20:305.Google Scholar
  105. 105.
    Kreuzer LB. Ultra-low gas concentration absorption spectroscopy. J Appl Phys. 1971;42:2934–2943.CrossRefGoogle Scholar
  106. 106.
    Ohlckers P, Ferber AM, Dmitriev VK, Kirpilenko G. A photo-acoustic gas sensing silicon microsystem. Transducers 2001, Germany, June 2001, pp. 780–783.Google Scholar
  107. 107.
    Schulz O. PhD thesis. Technical University of Ilmenau, 2007.Google Scholar
  108. 108.
  109. 109.
    Becker T, Mühlberger S, Bosch-von Braunmühl C, Müller G, Meckes A, Benecke W. Microreactors and microfluidic systems: an innovative approach to gas sensing using tin-oxide-based gas sensors. Sensor Actuat. 2001;B77:48–54.Google Scholar
  110. 110.
    Becker T, Mühlberger S, Bosch - von Braunmühl C, Müller G, Ziemann T, Hechtenberg KV. Air pollution monitoring using tin-oxide based micro-reactor systems. Sensor Actuat. 2000;B69:108–119.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.EADS Innovation WorksGermany

Personalised recommendations