Skip to main content

Regulation of Thrombin Receptor Signaling

  • Chapter
  • First Online:
Book cover Thrombin

Abstract

Thrombin, a coagulant protease, is generated at sites of vascular injury and elicits cellular responses critical for haemostasis and thrombosis, as well as inflammation and proliferation. Protease-activated receptors (PARs) are G-protein-coupled receptors that account for the majority of thrombin’s effects on cells. PAR1, the prototype for this family, is the predominant mediator of thrombin signaling in most cell types. PAR3 and PAR4 also respond to thrombin and are differentially expressed in various cell types. PARs are uniquely activated by proteolysis, which results in the generation of a tethered ligand that cannot diffuse away, unlike normal reversibly activated G-protein-coupled receptors. Since PARs are irreversibly activated, signaling must be tightly regulated. Desensitization and trafficking of proteolytically activated PARs control the magnitude, duration and spatial aspects of receptor signaling. Thrombin also elicits cell-type-specific response through the activation of distinct PARs and G-protein subtypes. Thus, elucidating the mechanisms that regulate PAR signaling in various cell types is critical for understanding their biological function. Here, I discuss our current understanding of the regulation of thrombin receptor signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arora,P., Ricks,T. K., and Trejo,J. 2007. Protease-activated receptor signalling, endocytic sorting and dysregulation in cancer. J. Cell Sci. 120: 921–928.

    Article  PubMed  CAS  Google Scholar 

  • Baffy,G., Yang,L., Raj,S., Manning,D. R., and Williamson,J. R. 1994. G protein coupling to the thrombin receptor in Chinese hamster lung fibroblasts. J. Biol. Chem. 269: 8483–8487.

    PubMed  CAS  Google Scholar 

  • Benka,M. L.,Lee,M., Wang,G. R.,Buckman,S., Burlacu,A., Cole,L., DePina,A., Dias,P., Granger,A., Grant,B., Hayward-Lester,A., Karki,S., Mann,S., Marcu,O., Nussenzweig,A., Piepenhagen,P., Raje,M., Roegiers,F., Rybak,S., Salic,A., Smith-Hall,J., Waters,J., Yamamoto,N., Yanowitz,J., Yeow,K., Busa,W. B., and Mendelsohn,M. E. 1995. The thrombin receptor in human platelets is coupled to a GTP binding protein of the G alpha q family. FEBS Lett. 363: 49–52.

    Article  PubMed  CAS  Google Scholar 

  • Boire,A., Covic,L., Agarwal,A., Jacques,S., Sherifi,S., and Kuliopulos,A. 2005. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120: 303–313.

    Article  PubMed  CAS  Google Scholar 

  • Brass,L. F.,Vassallo,R. R.,Belmonte,E., Ahuja,M., Cichowski,K., and Hoxie,J. A. 1992. Structure and function of the human platelet thrombin receptor. Studies using monoclonal antibodies directed against a defined domain within the receptor N terminus. J. Biol. Chem. 267: 13795–13798.

    PubMed  CAS  Google Scholar 

  • Camerer,E., Huang,W., and Coughlin,S. R. 2000. Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc. Natl. Acad. Sci. USA 97: 5255–5260.

    Article  PubMed  CAS  Google Scholar 

  • Carlton,J., Bujny,M., Peter,B. J.,Oorschot,V. M. J.,Rutherford,A., Meller,H., Klumperman,J., McMahon,H. T., and Cullen,P. J. 2004. Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high curvature membranes and 3-phosphoinositides. Curr. Biol. 14: 1791–1800.

    Article  PubMed  CAS  Google Scholar 

  • Chen,C. H.,Paing,M. M., and Trejo,J. 2004. Termination of protease-activated receptor-1 signaling by β-arrestins is independent of receptor phosphorylation. J. Biol. Chem. 279: 10020–10031.

    Article  PubMed  CAS  Google Scholar 

  • Chen,J., Ishii,M., Wang,L., Ishii,K., and Coughlin,S. R. 1994. Thrombin receptor activation: Confirmation of the intramolecular tethered liganding hypothesis and discovery of an alternative intermolecular liganding mode. J. Biol. Chem. 269: 16041–16045.

    PubMed  CAS  Google Scholar 

  • Cirino,G., Cicala,C., Bucci,M. R.,Sorrentino,L., Maraganore,J. M., and Stone,S. R. 1996. Thrombin functions as an inflammatory mediator through activation of its receptor. J. Exp. Med. 183: 821–827.

    Article  PubMed  CAS  Google Scholar 

  • Connolly,A. J.,Ishihara,H., Kahn,M. L.,Farese,R. V., and Coughlin,S. R. 1996. Role of the thrombin receptor in development and evidence for a second receptor. Nature 381: 516–519.

    Article  PubMed  CAS  Google Scholar 

  • Coughlin,S. R.2005.Protease-activated receptors in hemostasis, thrombosis and vascular biology. J. Thromb. Haemost. 3: 1800–1814.

    Article  PubMed  CAS  Google Scholar 

  • Covic,L., Gresser,A. L., and Kuliopulos,A. 2000. Biphasic kinetics of activation and signaling for PAR1 and PAR4 thrombin receptors in platelets. Biochemistry 39: 5458–5467.

    Article  PubMed  CAS  Google Scholar 

  • Edeling,M. A.,Smith,C., and Owen,D. 2006. Life of a clathrin coat: Insights from clathrin and AP structures. Nat. Mol. Cell. Biol. 7: 32–44.

    Article  CAS  Google Scholar 

  • Faruqi,T. R.,Weiss,E. J.,Shapiro,M. J.,Huang,W., and Coughlin,S. R.2000.Structure–function analysis of protease-activated receptor-4 tethered ligand peptides. Determinants of specificity and utility in assays of receptor function. J. Biol. Chem. 275: 19728–19734.

    Article  PubMed  CAS  Google Scholar 

  • Feistritzer,C., and Riewald,M. 2005. Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine-1-phosphate receptor-1 crossactivation. Blood 105: 3178–3184.

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist,A., Vanhauwe,J. F.,Li,A., Thomas,T. O.,Voyno-Yasenetskaya,T., and Hamm,H. E. 2001. Galpha minigenes expressing C-terminal peptides serve as specific inhibitors of thrombin-mediated endothelial activation. J. Biol. Chem. 276: 25672–25679.

    Article  PubMed  CAS  Google Scholar 

  • Griffin,C. T.,Srinivasan,Y., Zheng,Y.-W.,Huang,W., and Coughlin,S. R. 2001. A role for thrombin receptor signaling in endothelial cells during embryonic development. Science 293: 1666–1670.

    Article  PubMed  CAS  Google Scholar 

  • Gullapalli,A., Wolfe,B. L.,Griffin,C. T.,Magnuson,T., and Trejo,J. 2006. An essential role for SNX1 in lysosomal sorting of protease-activated receptor-1: Evidence for retromer, Hrs and Tsg101 independent functions of sorting nexins. Mol. Biol. Cell 17: 1228–1238.

    Article  PubMed  CAS  Google Scholar 

  • Hein,L., Ishii,K., Coughlin,S. R., and Kobilka,B. K. 1994. Intracellular targeting and trafficking of thrombin receptors: A novel mechanism for resensitization of a G protein-coupled receptor. J. Biol. Chem. 269: 27719–27726.

    PubMed  CAS  Google Scholar 

  • Hoxie,J. A.,Ahuja,M., Belmonte,E., Pizarro,S., Parton,R., and Brass,L. F. 1993. Internalization and recycling of activated thrombin receptors. J. Biol. Chem. 268: 13756–13763.

    PubMed  CAS  Google Scholar 

  • Hung,D. T.,Wong,Y. H.,Vu,T.-K. H., and Coughlin,S. R. 1992. The cloned platelet thrombin receptor couples to at least two distinct effectors to stimulate both phosphoinositide hydrolysis and inhibit adenylyl cyclase. J. Biol. Chem. 353: 20831–20834.

    Google Scholar 

  • Ishihara,H., Connolly,A. J.,Zeng,D., Kahn,M. L.,Zheng,Y. W.,Timmons,C., Tram,T., and Coughlin,S. R.1997.Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386: 502–506.

    Article  PubMed  CAS  Google Scholar 

  • Ishii,K., Chen,J., Ishii,M., Koch,W. J.,Freedman,N. J.,Lefkowitz,R. J., and Coughlin,S. R. 1994. Inhibition of thrombin receptor signaling by a G protein-coupled receptor kinase. Functional specificity among G protein-coupled receptor kinases. J. Biol. Chem. 269: 1125–1130.

    PubMed  CAS  Google Scholar 

  • Kahn,M. L.,Zheng,Y. W.,Huang,W., Bigornia,V., Zeng,D., Moff,S., Farese,R. V.,Jr., Tam,C., and Coughlin,S. R. 1998. A dual thrombin receptor system for platelet activation. Nature 394: 690–694.

    Article  PubMed  CAS  Google Scholar 

  • Kahn,M. L.,Nakanishi-Matsui,M., Shapiro,M. J.,Ishihara,H., and Coughlin,S. R.1999.Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J. Clin. Invest. 103: 879–887.

    Article  PubMed  CAS  Google Scholar 

  • Kataoka,H., Hamilton,J. R.,McKemy,D. D.,Camerer,E., Zheng,Y.-W.,Cheng,A., Griffin,C., and Coughlin,S. R.2003.Protease-activated receptors 1 and 4 mediate thrombin signaling in endothelial cells. Blood 102: 3224–3231.

    Article  PubMed  CAS  Google Scholar 

  • Klages,B., Brandt,U., Simon,M. I.,Schultz,G., and Offermanns,S. 1999. Activation of G12/G13 results in shape change and rho/rho kinase-mediated myosin light chain phosphorylation in mouse platelets. J. Cell. Biol. 144: 745–754.

    Article  PubMed  CAS  Google Scholar 

  • Krupnick,J. G., and Benovic,J. L. 1998. The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu. Rev. Pharmacol. Toxicol. 38: 289–319.

    Article  PubMed  CAS  Google Scholar 

  • Kuliopulos,A., Covic,L., Seely,S. K.,Sheridan,P. J.,Helin,J., and Costello,C. E. 1999. Plasmin desensitization of the PAR1 thrombin receptor: Kinetics, sites of truncation, and implications for thrombolytic therapy. Biochemistry 38: 4572–4585.

    Article  PubMed  CAS  Google Scholar 

  • Lopez,I., Mak,E. C.,Ding,J., Hamm,H. E., and Lomasney,J. W. 2001. A novel bifunctional phospholipase C that is regulated by G alpha 12 and stimulates the ras/mitogen-activated protein kinase pathway. J. Biol. Chem. 276: 2758–2765.

    Article  PubMed  CAS  Google Scholar 

  • Ludeman,M. J.,Zheng,Y. W.,Ishii,K., and Coughlin,S. R. 2004. Regulated shedding of PAR1 N-terminal exodomain from endothelial cells. J. Biol. Chem. 279: 18592–18599.

    Article  PubMed  CAS  Google Scholar 

  • Ludeman,M. J.,Kataoka,H., Srinivasas,Y., Esmon,N. L.,Esmon,C. T., and Coughlin,S. R.2005.PAR1 cleavage and signaling in response to activated protein C and thrombin. J. Biol. Chem. 280: 13122–13128.

    Article  PubMed  CAS  Google Scholar 

  • Mao,J., Yuan,H., Xie,W., Simon,M. I., and Wu,D. 1998. Specific involvement of G proteins in regulation of serum response factor-mediated gene transcription by different receptors. J. Biol. Chem. 273: 27118–27123.

    Article  PubMed  CAS  Google Scholar 

  • Marchese,A., Paing,M. M.,Temple,B. R. S., and Trejo,J. 2008. G Protein-coupled receptor sorting to endosomes and lysosomes. Annu. Rev. Pharmcol. Toxicol. 48: 601–629.

    Article  CAS  Google Scholar 

  • Mari,B., Imbert,V., Belhacene,N., Far,D. F.,Peyron,J. F.,Pouyssegur,J., Van,O., Schilling,E., Rossi,B., and Auberger,P. 1994. Thrombin and thrombin receptor agonist peptide induce early events of T cell activation and synergize with TCR cross-linking for CD69 expression and interleukin 2 production. J. Biol. Chem. 269: 8517–8523.

    PubMed  CAS  Google Scholar 

  • McLaughlin,J. N.,Shen,L., Holinstat,M., Brooks,J. D.,DiBenedetto,E., and Hamm,H. E. 2005. Functional selectivity of G protein signaling by agonist peptides and thrombin for the protease-activated receptor-1. J. Biol. Chem. 280: 25048–25059.

    Article  PubMed  CAS  Google Scholar 

  • McNamara,C. A.,Sarembok,I. J.,Gimple,L. W.,Fenton,J. W.,II, Coughlin,S. R., and Owens,G. K. 1992. Thrombin stimulation of smooth muscle cell proliferation is mediated by a proteolytic, receptor-mediated mechanism. J. Clin. Invest. 91: 94–98.

    Article  Google Scholar 

  • Moers,A., Nieswandt,B., Massberg,S., Wettschureck,N., Gruner,S., Konrad,I., Schulte,V., Aktas,B., Gratacap,M. P.,Simon,M. I.,Gawaz,M., and Offermanns,S. G.2003.G(13) is an essential mediator of platelet activation in haemostasis and thrombosis. Nat. Med. 9: 1418–1422.

    Article  PubMed  CAS  Google Scholar 

  • Molino,M., Bainton,D. F.,Hoxie,J. A.,Coughlin,S. R., and Brass,L. F. 1997. Thrombin receptors on human platelets. Initial localization and subsequent redistribution during platelet activation. J. Biol. Chem. 272: 6011–6017.

    Article  PubMed  CAS  Google Scholar 

  • Morrissey,J. H. 2004. Tissue factor: A key molecule in haemostatic and non-haemostatic systems. Int. J. Hematol. 79: 103–108.

    Article  PubMed  CAS  Google Scholar 

  • Mosnier,L. O.,Zlokovic,B. V., and Griffin,J. H. 2007. The cytoprotective protein C pathway. Blood 109: 3161–3172.

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi-Matsui,M., Zheng,Y. W.,Weiss,E. J.,Sulciner,D., and Coughlin,S. R.2000.PAR3 is a cofactor for PAR4 activation by thrombin. Nature 404: 609–613.

    Article  PubMed  CAS  Google Scholar 

  • Nesi,A., and Fragai,M. 2007. Substrate specificities of matrix metalloproteinase 1 in PAR-1 exodomain proteolysis. ChemBioChem 12: 1367–1369.

    Article  Google Scholar 

  • Nystedt,S., Emilsson,K., Wahlestedt,C., and Sundelin,J. 1994. Molecular cloning of a potential novel proteinase activated receptor. Proc. Natl. Acad. Sci. USA 91: 9208–9212.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien,P. J.,Prevost,N., Molino,M., Hollinger,M. K.,Woolkalis,M. J.,Woulfe,D. S., and Brass,L. F. 2000. Thrombin responses in human endothelial cells. Contributions from receptors other than PAR1 include transactivation of PAR2 by thrombin-cleaved PAR1. J. Biol. Chem. 275: 13502–13509.

    Article  PubMed  Google Scholar 

  • Offermanns,S., Toombs,C. F.,Hu,Y. H., and Simon,M. I. 1997. Defective platelet activation in G alpha(q)-deficient mice. Nature 389: 183–186.

    Article  PubMed  CAS  Google Scholar 

  • Oldham,W. M., and Hamm,H. E. 2008. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 9: 60–71.

    Article  PubMed  CAS  Google Scholar 

  • Paing,M. M.,Stutts,A. B.,Kohout,T. A.,Lefkowitz,R. J., and Trejo,J.2002.β-Arrestins regulate protease-activated receptor-1 desensitization but not internalization or down-regulation. J. Biol. Chem. 277: 1292–1300.

    Article  PubMed  CAS  Google Scholar 

  • Paing,M. M.,Johnston,C. A.,Siderovski,D. P., and Trejo,J. 2006. Clathrin adaptor AP2 regulates thrombin receptor constitutive internalization and endothelial cell resensitization. Mol. Cell. Biol. 28: 3221–3242.

    Google Scholar 

  • Riewald,M., and Ruf,W. 2001. Mechanistic coupling of protease signaling and initiation of coagulation by tissue factor. Proc. Natl. Acad. Sci. USA 98: 7742–7747.

    Article  PubMed  CAS  Google Scholar 

  • Ruppel,K. M.,Willison,D., Kataoka,H., Wang,A., Zheng,Y. W.,Cornelissen,I., Yin,L., Xu,S. M., and Coughlin,S. R. 2005. Essential role for Gα13. in endothelial cells during embryonic development Proc. Natl. Acad. Sci. USA 102: 8281–8286.

    Article  PubMed  CAS  Google Scholar 

  • Sambrano,G. R.,Weiss,E. J.,Zheng,Y. W.,Huang,W., and Coughlin,S. R. 2001. Role of thrombin signalling in platelets in haemostasis and thrombosis. Nature 413: 74–78.

    Article  PubMed  CAS  Google Scholar 

  • Schmid,S. L.1997.Clathrin-coated vesicle formation and protein sorting: An integrated process. Annu. Rev. Biochem. 66: 511–548.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro,M. J.,Trejo,J., Zeng,D., and Coughlin,S. R. 1996. Role of the thrombin receptor’s cytoplasmic tail in intracellular trafficking. Distinct determinants for agonist-triggered versus tonic internalization and intracellular localization. J. Biol. Chem. 271: 32874–32880.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro,M. J.,Weiss,E. J.,Faruqi,T. R., and Coughlin,S. R.2000.Protease-activated receptors 1 and 4 are shut off with distinct kinetics after activation by thrombin. J. Biol. Chem. 275: 25216–25221.

    Article  PubMed  CAS  Google Scholar 

  • Tiruppathi,C., Yan,W., Sandoval,R., Naqvi,T., Pronin,A. N.,Benovic,J. L., and Malik,A. B. 2000. G protein-coupled receptor kinase-5 regulates thrombin-activated signaling in endothelial cells. Proc. Natl. Acad. Sci. USA 97: 7440–7445.

    Article  PubMed  CAS  Google Scholar 

  • Tiruppathi,C., Minshall,R. D.,Paria,B. C.,Vogel,S. M., and Malik,A. B. 2002. Role of Ca2+. signaling in the regulation of endothelial permeability Vasc. Pharmacol. 39: 173–185.

    Article  CAS  Google Scholar 

  • Traynelis,S. F., and Trejo,J. 2007. Protease-activated receptor signaling: New roles and regulatory mechanisms. Curr. Opin. Hematol. 14: 230–235.

    Article  PubMed  CAS  Google Scholar 

  • Trejo,J., and Coughlin,S. R. 1999. The cytoplasmic tails of protease-activated receptor-1 and substance P receptor specify sorting to lysosomes versus recycling. J. Biol. Chem. 274: 2216–2224.

    Article  PubMed  CAS  Google Scholar 

  • Trejo,J., Connolly,A. J., and Coughlin,S. R. 1996. The cloned thrombin receptor is necessary and sufficient for activation of mitogen-activated protein kinase and mitogenesis in mouse lung fibroblasts. Loss of responses in fibroblasts from receptor knockout mice. J. Biol. Chem. 271: 21536–21541.

    Article  PubMed  CAS  Google Scholar 

  • Trejo,J., Hammes,S. R., and Coughlin,S. R. 1998. Termination of signaling by protease-activated receptor-1 is linked to lysosomal sorting. Proc. Natl. Acad. Sci. USA 95: 13698–13702.

    Article  PubMed  CAS  Google Scholar 

  • Vu,T. K. H.,Hung,D. T.,Wheaton,V. I., and Coughlin,S. R.1991a.Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64: 1057–1068.

    Article  CAS  Google Scholar 

  • Vu,T. K. H.,Wheaton,V. I.,Hung,D. T., and Coughlin,S. R.1991b.Domains specifying thrombin–receptor interaction. Nature 353: 674–677.

    Article  CAS  Google Scholar 

  • Wang,Y., Zhou,Y., Szabo,K., Haft,C. R., and Trejo,J. 2002. Down-regulation of protease-activated receptor-1 is regulated by sorting nexin 1. Mol. Biol. Cell 13: 1965–1976.

    Article  PubMed  CAS  Google Scholar 

  • Wojciak-Stothard,B., and Ridley,A. J. 2002. Rho GTPases and the regulation of endothelial permeability. Vasc. Pharmacol. 39: 187–199.

    Article  CAS  Google Scholar 

  • Wolfe,B. L.,Marchese,A., and Trejo,J. 2007. Ubiquitination differentially regulates clathrin-dependent internalization of protease-activated receptor-1. J. Cell Biol. 177: 905–916.

    Article  PubMed  CAS  Google Scholar 

  • Xu,W. F.,Andersen,H., Whitmore,T. E.,Presnell,S. R.,Yee,D. P.,Ching,A., Gilbert,T., Davie,E. W., and Foster,D. C. 1998. Cloning and characterization of human protease-activated receptor 4. Proc. Natl. Acad. Sci. USA 95: 6642–6646.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I am indebted to members of the Trejo laboratory. Grants from the NIH (HL073328), American Heart Association (Established Investigator Award) and a Susan G. Komen Breast Cancer Foundation supported work from my laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JoAnn Trejo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Trejo, J. (2009). Regulation of Thrombin Receptor Signaling. In: Maragoudakis, M., Tsopanoglou, N. (eds) Thrombin. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09637-7_3

Download citation

Publish with us

Policies and ethics