Skip to main content

The Role of Thrombin and its Receptors in Epithelial Malignancies: Lessons from a Transgenic Mouse Model and Transcriptional Regulation

  • Chapter
  • First Online:
Thrombin

Abstract

The otherwise well-orchestrated epithelial sheets are disrupted when they acquire the ability to overexpress the prototype mammalian thrombin receptor, human protease-activated receptor-1 (hPar1). This is exhibited by down-regulation of cell–cell contacts and alterations in cell–matrix interactions. The notion that hPar1 is one of a series of genes that is part of a malignant program stems from studies indicating that hPar1 expression directly correlates with tumor metastasis and the time-limited physiological invasion of the placenta to the uterus decidua. Our transgenic mouse model of tissue-targeted hPar1 overexpression in the mammary glands exhibits a phenotype of hyperplasia, characterized by a dense network of ductal side branching and accelerated proliferation. The transgenic mammary glands exhibit increased levels of wnt-4 and -7b, and the striking stabilization of β-catenin. This novel association between hPar1 and nuclear β-catenin may provide a key determinant in the molecular pathway of hPar1 oncogenicity. While studying the properties of hPar1 in tumor biology we demonstrated its role as a survival factor that protects cells from undergoing apoptosis. Withdrawal of the hPar1 gene leads to selective apoptosis especially in young sprouting blood vessels, whereas mature vessels remain unaffected. We also provide evidence showing that hPar1 gene overexpression in tumors stems from enhanced transcriptional activity. This is evaluated on the basis of elicited run-on transcription rate in highly metastatic vs. low metastatic cells (on a background of equal stability rates). Indeed, we have shown that the transcription factor Egr-1 induced hPar1 gene overexpression in prostate cancer. In addition, the tumor suppressor gene p53 also acts on hPar1 as one of its target genes, regulating its level of expression in the context of a given tumor. It still remains to determine the profile of individual fingerprints and specific motifs that bind to a panel of transcription factors, as well as tumor suppressor genes which are critically involved in altering hPar1 transcription levels according to the type of tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson,E., de Belle,I.Mittal,S.Wang,Y.Hayakawa,J.Korkmaz,K.O'Hagan,D.McClelland,M.Mercola.D. 2003. Egr1 signaling in prostate cancer. Cancer Biol. Ther. 2: 617–622

    PubMed  CAS  Google Scholar 

  • Aplin,J.D., Haigh,T.Vicovac,L.Church,H.J.Jones.C.J. 1998. Anchorage in the developing placenta: An overlooked determinant of pregnancy outcome? Hum. Fertil. (Camb).1:75–79

    Article  Google Scholar 

  • Bass,K.E., Morrish,D.Roth,I.Bhardwaj,D.Taylor,R.Zhou,Y.Fisher.S.J. 1994. Human cytotrophoblast invasion is up-regulated by epidermal growth factor: Evidence that paracrine factors modify this process. Dev. Biol. 164: 550–561

    Article  PubMed  CAS  Google Scholar 

  • Berx,G., Cleton-Jansen,A.M.Strumane,K.de Leeuw,W.J.Nollet,F.van Roy,F.Cornelisse.C. 1996. E-cadherin is inactivated in a majority of invasive human lobular breast cancers by truncation mutations throughout its extracellular domain. Oncogene 13: 1919–1925

    PubMed  CAS  Google Scholar 

  • Bischof,P., Aplin,J.D.Bentin-Ley,U.Brannstrom,M.Casslen,B.Castrillo,J.L.Classen-Linke,I.Critchley,H.O.Devoto,L.D'Hooghe,T.Horcajadas,J.A.Groothuis,P.Ivell,R.Pongrantz,I.Macklon,N.S.Sharkey,A.Vicovac,L.White,J.O.Winterhager,E.von Wolff,M.Simon,C.Stavreus-Evers.A. 2006. Implantation of the human embryo: Research lines and models. From the Implantation Research Network “Fruitful”. Gynecol. Obstet. Invest. 62: 206–216

    Article  PubMed  CAS  Google Scholar 

  • Bishop,J.M. 1991. Molecular themes in oncogenesis. Cell 64: 235–48

    Article  PubMed  CAS  Google Scholar 

  • Blagosklonny,M.V. 2000. p53 from complexity to simplicity: Mutant p53 stabilization, gain-of-function, and dominant-negative effect. FASEB J. 14: 1901–1907

    Article  PubMed  CAS  Google Scholar 

  • Brattain,M.G., Levine,A.E.Chakrabarty,S.Yeoman,L.C.Willson,J.K.Long.B. 1984. Heterogeneity of human colon carcinoma. Cancer Metastasis Rev. 3: 177–191

    Article  PubMed  CAS  Google Scholar 

  • Carter,A.M., Enders,A.C.Jones,C.J.Mess,A.Pfarrer,C.Pijnenborg,R.Soma.H. 2006. Comparative placentation and animal models: Patterns of trophoblast invasion – a workshop report. Placenta27:(Suppl A)S30–S33

    Article  PubMed  Google Scholar 

  • Cartwright,J.E., Kenny,L.C.Dash,P.R.Crocker,I.P.Aplin,J.D.Baker,P.N.Whitley.G.S. 2002. Trophoblast invasion of spiral arteries: A novel in vitro model. Placenta 23: 232–235

    Article  PubMed  CAS  Google Scholar 

  • Chen,C.D., Welsbie,D.S.Tran,C.Baek,S.H.Chen,R.Vessella,R.Rosenfeld,M.G.Sawyers.C.L. 2004. Molecular determinants of resistance to antiandrogen therapy. Nat. Med. 10: 33–39

    Article  PubMed  Google Scholar 

  • Coughlin,S.R. 2000. Thrombin signalling and protease-activated receptors. Nature 407: 258–264

    Article  PubMed  CAS  Google Scholar 

  • Cross,J.C., Werb,Z.Fisher.S.J. 1994. Implantation and the placenta: Key pieces of the development puzzle. Science 266: 1508–1518

    Article  PubMed  CAS  Google Scholar 

  • da Costa,L.T., He,T.C.Yu,J.Sparks,A.B.Morin,P.J.Polyak,K.Laken,S.Vogelstein,B.Kinzler.K.W. 1999. CDX2 is mutated in a colorectal cancer with normal APC/beta-catenin signaling. Oncogene 18: 5010–5014

    Article  PubMed  CAS  Google Scholar 

  • Dearth,L.R., Qian,H.Wang,T.Baroni,T.E.Zeng,J.Chen,S.W.Yi,S.Y.Brachmann.R.K. 2007. Inactive full-length p53 mutants lacking dominant wild-type p53 inhibition highlight loss of heterozygosity as an important aspect of p53 status in human cancers. Carcinogenesis 28: 289–298

    Article  PubMed  CAS  Google Scholar 

  • el-Deiry,W.S., Kern,S.E.Pietenpol,J.A.Kinzler,K.W.Vogelstein.B. 1992. Definition of a consensus binding site for p53. Nat. Genet. 1: 45–49

    Article  PubMed  CAS  Google Scholar 

  • Eshleman,J.R., Markowitz,S.D.Donover,P.S.Lang,E.Z.Lutterbaugh,J.D.Li,G.M.Longley,M.Modrich,P.Veigl,M.L.Sedwick.W.D. 1996. Diverse hypermutability of multiple expressed sequence motifs present in a cancer with microsatellite instability. Oncogene 12: 1425–1432

    PubMed  CAS  Google Scholar 

  • Even-Ram,S., Uziely,B.Cohen,P.Grisaru-Granovsky,S.Maoz,M.Ginzburg,Y.Reich,R.Vlodavsky,I.Bar-Shavit.R. 1998. Thrombin receptor overexpression in malignant and physiological invasion processes. Nat Med. 4: 909–914

    Article  PubMed  CAS  Google Scholar 

  • Even-Ram,S.C., Grisaru-Granovsky,S.Pruss,D.Maoz,M.Salah,Z.Yong-Jun,Y.Bar-Shavit.R. 2003. The pattern of expression of protease-activated receptors (PARs) during early trophoblast development. J. Pathol. 200: 47–52

    Article  PubMed  CAS  Google Scholar 

  • Fearon,E.R., Vogelstein.B. 1990. A genetic model for colorectal tumorigenesis. Cell 61: 759–767

    Article  PubMed  CAS  Google Scholar 

  • Fisher,S.J., Damsky.C.H. 1993. Human cytotrophoblast invasion. Semin. Cell Biol. 4: 183–188

    Article  PubMed  CAS  Google Scholar 

  • Genbacev,O., Miller.R.K. 2000. Post-implantation differentiation and proliferation of cytotrophoblast cells: In vitro models – a review. Placenta21(Suppl A):S45–S49

    Article  PubMed  Google Scholar 

  • Genbacev,O., White,T.E.Gavin,C.E.Miller.R.K. 1993. Human trophoblast cultures: Models for implantation and peri-implantation toxicology. Reprod. Toxicol.7(Suppl 1):75–94

    Article  PubMed  CAS  Google Scholar 

  • Genbacev,O., McMaster,M.T.Fisher.S.J. 2000. A repertoire of cell cycle regulators whose expression is coordinated with human cytotrophoblast differentiation. Am. J. Pathol. 157: 1337–1351

    Article  PubMed  CAS  Google Scholar 

  • Grisaru-Granovsky,S., Salah,Z.Maoz,M.Pruss,D.Beller,U.Bar-Shavit.R. 2005. Differential expression of protease activated receptor 1 (Par1) and pY397FAK in benign and malignant human ovarian tissue samples. Int. J. Cancer 113: 372–378

    Article  PubMed  CAS  Google Scholar 

  • Henrikson,K.P., Salazar,S.L.Fenton,J.W. and 2nd,Pentecost.B.T. 1999. Role of thrombin receptor in breast cancer invasiveness. Br. J. Cancer 79: 401–406

    Article  PubMed  CAS  Google Scholar 

  • Joerger,A.C., Fersht.A.R. 2007. Structure–function-rescue: The diverse nature of common p53 cancer mutants. Oncogene 26: 2226–2242

    Article  PubMed  CAS  Google Scholar 

  • Jokhi,P.P., Chumbley,G.King,A.Gardner,L.Loke.Y.W. 1993. Expression of the colony stimulating factor-1 receptor (c-fms product) by cells at the human uteroplacental interface. Lab. Invest. 68: 308–320

    PubMed  CAS  Google Scholar 

  • Kato,S., Han,S.Y.Liu,W.Otsuka,K.Shibata,H.Kanamaru,R.Ishioka.C. 2003. Understanding the function–structure and function–mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc. Natl Acad. Sci. USA 100: 8424–8429

    Article  PubMed  CAS  Google Scholar 

  • Lala,P.K., Lee,B.P.Xu,G.Chakraborty.C. 2002. Human placental trophoblast as an in vitro model for tumor progression. Can. J. Physiol. Pharmacol. 80: 142–149

    Article  PubMed  CAS  Google Scholar 

  • Liotta,L., Petricoin.E. 2000. Molecular profiling of human cancer. Nat. Rev. Genet. 1: 48–56

    Article  PubMed  CAS  Google Scholar 

  • Menendez,D., Inga,A.Resnick.M.A. 2006. The biological impact of the human master regulator p53 can be altered by mutations that change the spectrum and expression of its target genes. Mol. Cell. Biol. 26: 2297–2308

    Article  PubMed  CAS  Google Scholar 

  • Nierodzik,M.L., Chen,K.Takeshita,K.Li,J.J.Huang,Y.Q.Feng,X.S.D’Andrea,M.R.Andrade-Gordon,P.Karpatkin.S. 1998. Protease-activated receptor 1 (PAR-1) is required and rate-limiting for thrombin-enhanced experimental pulmonary metastasis. Blood 92: 3694–3700

    PubMed  CAS  Google Scholar 

  • O’Brien,L.E., Zegers,M.M.Mostov.K.E. 2002. Opinion: Building epithelial architecture: Insights from three-dimensional culture models. Nat. Rev. Mol. Cell Biol. 3: 531–537

    Article  PubMed  Google Scholar 

  • Olivier,M., Eeles,R.Hollstein,M.Khan,M.A.Harris,C.C.Hainaut.P. 2002. The IARC TP53 database: New online mutation analysis and recommendations to users. Hum. Mutat. 19: 607–614

    Article  PubMed  CAS  Google Scholar 

  • Osterlund,C., Wramsby,H.Pousette.A. 1996. Temporal expression of platelet-derived growth factor (PDGF)-A and its receptor in human preimplantation embryos. Mol. Hum. Reprod. 2: 507–512

    Article  PubMed  CAS  Google Scholar 

  • Pijnenborg,R., Dixon,G.Robertson,W.B.Brosens.I. 1980. Trophoblastic invasion of human decidua from 8 to 18 weeks of pregnancy. Placenta 1: 3–19

    Article  PubMed  CAS  Google Scholar 

  • Pijnenborg,R., Robertson,W.B.Brosens,I.Dixon.G. 1981. Review article: Trophoblast invasion and the establishment of haemochorial placentation in man and laboratory animals. Placenta 2: 71–91

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen,U.B., Vouret-Craviari,V.Jallat,S.Schlesinger,Y.Pages,G.Pavirani,A.Lecocq,J.P.Pouyssegur,J.Van Obberghen-Schilling.E. 1991. cDNA cloning and expression of a hamster alpha-thrombin receptor coupled to Ca2 + mobilization. FEBS Lett. 288: 123–128

    Article  PubMed  CAS  Google Scholar 

  • Resnick,M.A., Inga.A. 2003. Functional mutants of the sequence-specific transcription factor p53 and implications for master genes of diversity. Proc. Natl Acad. Sci. USA 100: 9934–9939

    Article  PubMed  CAS  Google Scholar 

  • Roncalli,M., Bulfamante,G.Viale,G.Springall,D.R.Alfano,R.Comi,A.Maggioni,M.Polak,J.M.Coggi.G. 1994. C-myc and tumour suppressor gene product expression in developing and term human trophoblast. Placenta 15: 399–409

    Article  PubMed  CAS  Google Scholar 

  • Ruiz,M., Troncoso,P.Bruns,C.Bar-Eli.M. 2001. Activator protein 2alpha transcription factor expression is associated with luminal differentiation and is lost in prostate cancer. Clin. Cancer Res. 7: 4086–4095

    PubMed  CAS  Google Scholar 

  • Salah,Z., Maoz,M.Cohen,I.Pizov,G.Pode,D.Runge,M.S.Bar-Shavit.R. 2005. Identification of a novel functional and rogen response element within hPar1 promoter: Implications to prostate cancer progression. FASEB J. 19: 62–72

    Article  PubMed  CAS  Google Scholar 

  • Salah,Z., Maoz,M.Pizov,G.Bar-Shavit.R.2007a.Transcriptional regulation of human protease-activated receptor 1: A role for the early growth response-1 protein in prostate cancer. Cancer Res. 67: 9835–9843

    Article  CAS  Google Scholar 

  • Salah,Z., Maoz,M., Pokroy,E., Lotem,M., Bar-Shavit,R., Uziely,B., 2007b.Protease Activated receptor-1 (hPar1.), a survival factor eliciting tumor progression. Mol. Cancer Res. 5: 229–240

    Article  CAS  Google Scholar 

  • Shtutman,M., Zhurinsky,J.Simcha,I.Albanese,C.D’Amico,M.Pestell,R.Ben-Ze’ev.A. 1999. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc. Natl Acad. Sci. USA 96: 5522–5527

    Article  PubMed  CAS  Google Scholar 

  • Sigal,A., Rotter.V. 2000. Oncogenic mutations of the p53 tumor suppressor: The demons of the guardian of the genome. Cancer Res. 60: 6788–6793

    PubMed  CAS  Google Scholar 

  • Soussi,T. 2007. p53 alterations in human cancer: More questions than answers. Oncogene 26: 2145–2156

    Article  PubMed  CAS  Google Scholar 

  • Tellez,C.S., Davis,D.W.Prieto,V.G.Gershenwald,J.E.Johnson,M.M.McCarty,M.F.Bar-Eli.M. 2007. Quantitative analysis of melanocytic tissue array reveals inverse correlation between activator protein-2alpha and protease-activated receptor-1 expression during melanoma progression. J. Invest. Dermatol. 127: 387–393

    Article  PubMed  CAS  Google Scholar 

  • van de Vijver,M.J., Peterse,J.L.Mooi,W.J.Wisman,P.Lomans,J.Dalesio,O.Nusse.R. 1988. Neu-protein overexpression in breast cancer. Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer. N. Engl. J. Med. 319: 1239–1245

    Article  PubMed  CAS  Google Scholar 

  • Vercruysse,L., Caluwaerts,S.Luyten,C.Pijnenborg.R. 2006. Interstitial trophoblast invasion in the decidua and mesometrial triangle during the last third of pregnancy in the rat. Placenta 27: 22–33

    Article  PubMed  CAS  Google Scholar 

  • Vicovac,L., Jones,C.J.Aplin.J.D. 1995. Trophoblast differentiation during formation of anchoring villi in a model of the early human placenta in vitro. Placenta 16: 41–56

    Article  PubMed  CAS  Google Scholar 

  • Vu,T.K., Hung,D.T.Wheaton,V.I.Coughlin.S.R. 1991. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64: 1057–1068

    Article  PubMed  CAS  Google Scholar 

  • Xiao,D., Chinnappan,D.Pestell,R.Albanese,C.Weber.H.C. 2005. Bombesin regulates cyclin D1 expression through the early growth response protein Egr-1 in prostate cancer cells. Cancer Res. 65: 9934–9942

    Article  PubMed  CAS  Google Scholar 

  • Yin,Y.J., Salah,Z.Grisaru-Granovsky,S.Cohen,I.Even-Ram,S.C.Maoz,M.Uziely,B.Peretz,T.Bar-Shavit.R. 2003. Human protease-activated receptor 1 expression in malignant epithelia: A role in invasiveness. Arterioscler. Thromb. Vasc. Biol. 23: 940–944

    Article  PubMed  CAS  Google Scholar 

  • Yin,Y.J., Katz,V.Salah,Z.Maoz,M.Cohen,I.Uziely,B.Turm,H.Grisaru-Granovsky,S.Suzuki,H.Bar-Shavit.R. 2006. Mammary gland tissue targeted overexpression of human protease-activated receptor 1 reveals a novel link to beta-catenin stabilization. Cancer Res. 66: 5224–5233

    Article  PubMed  CAS  Google Scholar 

  • Yu,Q., Geng,Y.Sicinski.P. 2001. Specific protection against breast cancers by cyclin D1 ablation. Nature 411: 1017–1021

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

These studies were supported by grants from US Army grant DAMD17-00-1-0277, Israel Science Foundation founded by the Israel Academy of Science and Humanities, Israel Association and Israel Cancer Research Fund (R. Bar-Shavit).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Salah, Z. et al. (2009). The Role of Thrombin and its Receptors in Epithelial Malignancies: Lessons from a Transgenic Mouse Model and Transcriptional Regulation. In: Maragoudakis, M., Tsopanoglou, N. (eds) Thrombin. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09637-7_10

Download citation

Publish with us

Policies and ethics