Bayes Factors Based on Test Statistics Under Order Restrictions

  • David RossellEmail author
  • Veerabhadran Baladandayuthapani
  • Valen E. Johnson
Part of the Statistics for Social and Behavioral Sciences book series (SSBS)


The subject of statistical inference under order restrictions has been studied extensively since Bartholomew’s likelihood-ratio test for means under restricted alternatives [1]. Order restrictions explicitly introduce scientific knowledge into the mathematical formulation of the problem, which can improve inference.


Posterior Probability Prior Distribution Prior Probability Importance Sampling Order Restriction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bartholomew, D.: A test of homogeneity of means under restricted alternatives. Journal of the Royal Statistical Society B, 23, 239–281 (1961)zbMATHMathSciNetGoogle Scholar
  2. [2]
    Barlow, R.E., Bartholomew, D.J., Bremner, J.M., Brunk, H.D.: Statistical Inference under Order Restrictions. The Theory and Application of Isotonic Regression. New York, Wiley (1972)zbMATHGoogle Scholar
  3. [3]
    Bayarri, M., Garcia-Donato, G.: Extending conventional priors for testing general hypotheses in linear models. Biometrika, 94, 135–152 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Berger, J., Pericchi, R.: Objective Bayesian methods for model selection: Introduction and comparison. In: Lahiri, P. (ed) Model Selection. Beachwood, OH, Institute of Mathematical Statistics Lecture Notes Monograph Series 38, 135–207 (2001)Google Scholar
  5. [5]
    Box, G.E.P., Tiao, G.C.: Bayesian Inference in Statistical Analysis. New York, Wiley (1992)zbMATHGoogle Scholar
  6. [6]
    Dunson, D., Neelon, B.: Bayesian inference on order-constrained parameters in generalized linear models. Biometrics, 59, 286–295 (2003)CrossRefMathSciNetGoogle Scholar
  7. [7]
    Gelman, A., Carlin, J., Stern, H., Rubin, D.: Bayesian Data Analysis (2nd ed.). Chapman & Hall (2004)zbMATHGoogle Scholar
  8. [8]
    Gelfand, A., Smith, A., Lee, T.: Bayesian analysis of constrained parameter and truncated data problems using gibbs sampling. Journal of the American Statistical Association, 87, 523–532 (1992)CrossRefMathSciNetGoogle Scholar
  9. [9]
    Hayter, A.: A one-sided studentized range test for testing against a simple ordered alternative. Journal of the American Statistical Association, 85, 778–785 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Hayter, A., Liu, W.: Exact calculations for the one-sided studentized range test for testing against a simple ordered alternative. Computational Statistics and Data Analysis, 22, 17–25 (1996)CrossRefMathSciNetGoogle Scholar
  11. [11]
    Huntjens, R.J.C., Peters, M.L., Woertman, L., Bovenschen, L.M., Martin, R.C., Postma, A.: Inter-identity amnesia in dissociative identity disorder: A simulated memory impairment? Psychological Medicine, 36, 857–863 (2006)CrossRefGoogle Scholar
  12. [12]
    Johnson, V.: Bayes factors based on test statistics. Journal of the Royal Statistical Society B, 67, 689–701 (2005)zbMATHCrossRefGoogle Scholar
  13. [13]
    Klugkist, I., Kato, B., Hoijtink, H.: Bayesian model selection using encompassing priors. Statistica Neerlandica, 59, 57–69 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    Klugkist, I., Laudy, O., Hoijtink, H.: Inequality constrained analysis of variance: A Bayesian approach. Psychological Methods, 10, 477–493 (2005)CrossRefGoogle Scholar
  15. [15]
    Kraemer, H., Paik, M.: A central t approximation to the noncentral t distribution. Technometrics, 21, 357–360 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    Martin, A.D., Quinn, K.M., Park, J.H.: MCMCpack: Markov chain Monte Carlo (MCMC) Package (2007). R package version 0.9-2Google Scholar
  17. [17]
    Mack, G., Wolfe, D.: K-sample rank test for umbrella alternatives. Journal of the American Statistical Association, 76, 175–181 (1981)CrossRefMathSciNetGoogle Scholar
  18. [18]
    Owen, D.: A special case of a bivariate non-central t-distribution. Biometrika, 52, 437–446 (1965)zbMATHMathSciNetGoogle Scholar
  19. [19]
    Robertson, T., Wright, F., Dykstra, R.: Order Restricted Statistical Inference. New York, Wiley (1988)zbMATHGoogle Scholar
  20. [20]
    Silvapulle, M., Sen, P.: Constrained Statistical Inference. New York, Wiley (2004)Google Scholar
  21. [21]
    Singh, B., Wright, F.: The level probabilities for a simple loop ordering. Annals of the Institute of Statistical Mathematics, 45, 279–292 (1993)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • David Rossell
    • 1
    Email author
  • Veerabhadran Baladandayuthapani
    • 2
  • Valen E. Johnson
    • 2
  1. 1.Bioinformatics and Biostatistics UnitInstitute for Research in Biomedicine of BarcelonaBarcelonaSpain
  2. 2.Department of BiostatisticsThe University of Texas M. D. Anderson Cancer CenterHoustonUSA

Personalised recommendations