Advertisement

A Statistician’s View on Bayesian Evaluation of Informative Hypotheses

  • Jay I. MyungEmail author
  • George Karabatsos
  • Geoffrey J. Iverson
Part of the Statistics for Social and Behavioral Sciences book series (SSBS)

Abstract

Theory testing lies at the heart of the scientific process. This is especially true in psychology, where, typically, multiple theories are advanced to explain a given psychological phenomenon, such as a mental disorder or a perceptual process. It is therefore important to have a rigorous methodology available for the psychologist to evaluate the validity and viability of such theories, or models for that matter. However, it may be argued that the current practice of theory testing is not entirely satisfactory.

Keywords

Posterior Distribution Marginal Likelihood Deviance Information Criterion Blood Pressure Data Posterior Predictive Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. [1]
    Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Petrox, B.N., Caski, F. (eds) Second International Symposium on Information Theory (pp. 267–281). Budapest, Academia Kiado (1973)Google Scholar
  2. [2]
    Barlow, R.E., Bartholomew, D.J., Bremner, J.M., Bunk, H.D.: Statistical Inference under Order Restrictions. New York, Wiley 1972)zbMATHGoogle Scholar
  3. [3]
    Berger, J.O., Pericchi, L.R.: The intrinsic Bayes factor for model selection and prediction. Journal of the American Statistical Association, 91, 109–122 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Chen, M.-H., Dey, D. K., Ibrahim, J.G.: Bayesian criterion based model assessment for categorical data. Biometrika, 91, 45–63 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Chen, M.-H., Shao, Q.-M.: Monte Carlo methods on Bayesian analysis of constrained parameter problems. Biometrika, 85, 73–87 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Dunson, D.B., Neelon, B.: Bayesian inference on order-constrained parameters in generalized linear models. Biometrics, 59, 286–295 (2003)CrossRefMathSciNetGoogle Scholar
  7. [7]
    Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. New York, Chapman & Hall (1993)zbMATHGoogle Scholar
  8. [8]
    Gelfand, A. E., Dey, D. K.: Bayesian model choice: Asymptotics and exact calculations. Journal of the Royal Statistical Society, Series B, 56, 501–514 (1994)zbMATHMathSciNetGoogle Scholar
  9. [9]
    Gelfand, A.E., Smith, A.F.M.: Sampling based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398–409 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Gelfand, A. E., Smith, A.F.M., Lee, R.-M.: Bayesian analysis of constrained paramater and truncated data problems. Journal of the American Statistical Association, 87, 523–532 (1992)CrossRefMathSciNetGoogle Scholar
  11. [11]
    Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis (2nd ed.). Boca Raton, FL, Chapman & Hall/CRC (2004)zbMATHGoogle Scholar
  12. [12]
    Geyer, C.J.: Constrained maximum likelihood exemplified by isotonic convex logistic regression. Journal of the American Statistical Association, 86, 717–724 (1991)CrossRefGoogle Scholar
  13. [13]
    Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markoc Chain Monte Carlo in Practice. Chapman & Hall, New York (1996)Google Scholar
  14. [14]
    Ibrahim, J.G., Chen, M.-H.,, Sinha, D.: Criterion based methods for Bayesian model assessment. Statistical Sinica, 11, 419–443 (2001)zbMATHMathSciNetGoogle Scholar
  15. [15]
    Ibrahim, J.G., Chen, M.-H., Sinha, D.: Bayesian Survival Analysis. New York, Springer-Verlag (2001)zbMATHGoogle Scholar
  16. [16]
    Iliopoulos, G., Kateri, M., Ntzoufras, I.: Bayesian estimation of unrestricted and order-restricted association models for a two-way contingency table. Computational Statistics & Data Analysis, 51, 4643–4655 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    Iverson, G.J., Harp, S.A.: A conditional likelihood ratio test for order restrictions in exponential families. Mathematical Social Sciences, 14, 141–159 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    Iverson, G.J.: Testing order in pair comparison data. Doctoral dissertation, Department of Psychology, New York University (1983)Google Scholar
  19. [19]
    Johnson, V.E., Albert, J.H.: Ordinal Data Modeling. New York, Springer (1999)zbMATHGoogle Scholar
  20. [20]
    Karabatsos, G.: The Rasch model, additive conjoint measurement, and new models of probabilistic measurement theory. Journal of Applied Measurement, 2, 389–423 (2001)Google Scholar
  21. [21]
    Karabatsos, G., Sheu, C.F.: Bayesian order-constrained inference for dichotomous models of unidimensional non-parametric item response theory. Applied Psychological Measurement, 28, 110–125 (2004)CrossRefMathSciNetGoogle Scholar
  22. [22]
    Kass, R.E., Raftery, A.E.: Bayes factor. Journal of the American Statistical Association, 90, 773–795 (1995)zbMATHCrossRefGoogle Scholar
  23. [23]
    Kato, B. S., Hoijtink, H.: A Bayesian approach to inequality constrained linear mixed models: estimation and model selection. Statistical Modelling, 6, 1–19 (2006)CrossRefMathSciNetGoogle Scholar
  24. [24]
    Klugkist, I., Laudy, O., Hoijtink, H.: Inequality constrained analysis of variance: A Bayesian approach. Psychological Methods, 10, 477–493 (2005)CrossRefGoogle Scholar
  25. [25]
    Klugkist, I., Kato, B., Hoijtink, H.: Bayesian model selection using encompassing priors. Statistic Neerlandica, 59, 57–69 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    Lee, M.D.: A hierarchical Bayesian model of human decision-making on an optimal stopping problem. Cognitive Science, 30, 1–26 (2006)CrossRefGoogle Scholar
  27. [27]
    Lee, M.D.: Three case studies in the Bayeian analysis of cognitive models. Psychonomic Bulletin & Review, 15, 1–15 (2008)CrossRefGoogle Scholar
  28. [28]
    Maxwell, S.E., Delaney, H.D.: Designing Experiments and Analyzing Data: A Model Comparison Perspective (2nd ed.). Mahwah, NJ, Lawrence Erlbaum Associates (2004)Google Scholar
  29. [29]
    McCullagh, P., Nelder, J.A.: Generalized Linear Models (2nd ed.). Boca Raton, FL, Chapman & Hall/CRC (1989)zbMATHGoogle Scholar
  30. [30]
    Myung, J.I., Karabatsos, G., Iverson, G.J.: A Bayesian approach to testing decision making axoims. Journal of Mathematical Psychology, 49, 205–225 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    O’Hagan, A., Forster, J.: Kendall’s Advanced Theory of Statistics Vol. 2B: Bayesian Inference (2nd ed.) (pp. 77–78). London, Arnold (2004)Google Scholar
  32. [32]
    O’Hagan, A.: Fractional Bayes factors for model comparison. Journal of the Royal Statistical Society, Series B, 57, 99–138 (1995)zbMATHMathSciNetGoogle Scholar
  33. [33]
    Robert, C.P.: The Bayesian Choice (second edition). New York, Springer (2001)zbMATHGoogle Scholar
  34. [34]
    Robert, C.P., Casella, G.: Monte Carlo Statistical Methods (second edition). New York, Springer (2004)zbMATHGoogle Scholar
  35. [35]
    Robertson, T., Wright, F.T., Dykstra, R.L.: Order Restricted Statistical Inference. New York, Wiley (1988)zbMATHGoogle Scholar
  36. [36]
    Rouder, J.N., Lu, J.: An introduction to Bayesian hierarchical models with an application in the theory of signal detection. Psychonomic Bulletin & Review, 12, 573–604 (2005)Google Scholar
  37. [37]
    Rouder, J.N., Lu, J., Speckman, P.L., Sun, D., Jiang, Y.: A hierarchical model for estimating response time distributions. Psychonomic Bulletin & Review, 12, 195–223 (2005)Google Scholar
  38. [38]
    Schwartz, G: Estimating the dimension of a model. The Annals of Statistics, 6, 461–464 (1978)CrossRefMathSciNetGoogle Scholar
  39. [39]
    Sedransk, J., Monahan, J., Chiu, H.Y.: Bayesian estimation of finite population parameters in categorizal data models incorporating order restrictions. Journal of the Royal Statistical Society, Series B, 47, 519–527 (1985)MathSciNetGoogle Scholar
  40. [40]
    Silvapulle, M.J., Sen, P.K.: Constrained Statistical Inference: Inequality, Order, and Shape Restrictions. Hoboken, NJ, Wiley (2005)zbMATHGoogle Scholar
  41. [41]
    Spiegelhalter, D.J., Best, N.G., Carlin, B.P., Linde, A. van der: Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, Series B, 64, 583–639 (2002)zbMATHCrossRefGoogle Scholar
  42. [42]
    Wagenmakers, E.-J.: A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14, 779–804 (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jay I. Myung
    • 1
    Email author
  • George Karabatsos
    • 2
  • Geoffrey J. Iverson
    • 3
  1. 1.Department of PsychologyOhio State UniversityColumbusUSA
  2. 2.College of EducationUniversity of Illinois–ChicagoChicagoUSA
  3. 3.Department of Cognitive SciencesUniversity of California at IrvineIrvineUSA

Personalised recommendations