Advertisement

Inequality Constrained Latent Class Models

  • Herbert HoijtinkEmail author
  • Jan Boom
Part of the Statistics for Social and Behavioral Sciences book series (SSBS)

Abstract

This chapter deals with inequality constrained latent class analysis. As will be exemplified, researchers often have competing theories that can be translated into inequality constrained latent class models. After this translation it is rather straightforward to evaluate these theories.

Keywords

Posterior Distribution Prior Distribution Latent Class Inequality Constraint Latent Class Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. [1]
    Boom, J., Hoijtink, H., Kunnen, S.: Rules in the balance. Classes, strategies or rules for the balance scale task. Cognitive Development, 16, 717–735 (2001)CrossRefGoogle Scholar
  2. [2]
    Boom, J., Laak, J.F. ter: Classes in the balance. Latent class analysis and the balance scale task. Developmental Review, 27, 127–149 (2007)CrossRefGoogle Scholar
  3. [3]
    Broverman, I.K., Vogel, S.R., Broverman, D.M., Clarkson, F.E., Rosenkrantz P.S.: Sex role stereotypes: A current appraisal. Journal of Social Issues, 28, 59–78 (1972)CrossRefGoogle Scholar
  4. [4]
    Constantinople, A.: Masculinity-Femininity: An exception to a famous dictum? Psychological Bulletin, 80, 389–407 (1973)CrossRefGoogle Scholar
  5. [5]
    Croon, M.A.: Latent class analysis with ordered latent classes. British Journal of Mathematical and Statistical Psychology, 43, 171–192 (1990)Google Scholar
  6. [6]
    Everitt, B.S.: A Monte Carlo investigation of the likelihood ratio test for number of classes in latent class analysis. Multivariate Behavioral Research, 23, 531–538 (1988)CrossRefGoogle Scholar
  7. [7]
    Graaf, A. de: Konstructie van een verbeterde versie van de Groninger Androgynie Schaal (GRAS) [Construction of an improved version of the Groninger Androgyny Scale]. Heijmans Bulletin, HB-74-710-EX, University of Groningen, Faculty of Social Sciences (1984)Google Scholar
  8. [8]
    Hoijtink, H., Molenaar I.W.: A multidimensional item response model: Constrained latent class analysis using the Gibbs sampler and posterior predictive checks. Psychometrika, 62, 171–190 (1997)zbMATHCrossRefGoogle Scholar
  9. [9]
    Hoijtink, H.: Constrained latent class analysis using the Gibbs sampler and posterior predictive p-values: Applications to educational testing. Statistica Sinica, 8, 691–712 (1998)zbMATHMathSciNetGoogle Scholar
  10. [10]
    Hoijtink, H.: Posterior inference in the random intercept model based on samples obtained with Markov chain Monte Carlo methods. Computational Statistics, 3, 315–336 (2000)CrossRefGoogle Scholar
  11. [11]
    Hoijtink, H.: Confirmatory latent class analysis: model selection using Bayes factors and (pseudo) likelihood ratio statistics. Multivariate Behavioral Research, 36, 563–588 (2001)CrossRefGoogle Scholar
  12. [12]
    Kass, R.E., Raftery, A.E.: Bayes factors. Journal of the American Statistical Association, 90, 773–795 (1995)zbMATHCrossRefGoogle Scholar
  13. [13]
    Laudy, O., Zoccolillo, M., Baillargeon, R., Boom, J., Tremblay, R., Hoijtink, H.: Applications of confirmatory latent class analysis in developmental psychology. European Journal of Developmental Psychology, 2, 1–15 (2005)CrossRefGoogle Scholar
  14. [14]
    Laudy, O., Boom, J., Hoijtink, H.: Bayesian computational methods for inequality constrained latent class analysis. In: Ark, A. van der, Croon, M., Sijtsma, K. (eds) New Developments in Categorical Data Analysis for the Social and Behavioral Sciences. Mahwah, NJ, Erlbaum (2004)Google Scholar
  15. [15]
    Lewin, M.: In the Shadow of the Past: Psychology Portrays the Sexes. New York, Columbia University Press (1984)Google Scholar
  16. [16]
    Lin, T.H., Dayton, C.M.: Model selection information criteria for non-nested latent class models. Journal of Educational and Behavioral Statistics, 22, 249–268 (1997)Google Scholar
  17. [17]
    Magidson, J., Vermunt, J.K.: Latent class models. In: Kaplan D, (ed) The Sage Handbook of Quantitative Methodology for the Social Sciences. London, Sage (2004)Google Scholar
  18. [18]
    McCutcheon, A.L.: Latent Class Analysis. London, Sage (1987)Google Scholar
  19. [19]
    Molenaar, I.W., Sijtsma, K.: Introduction to Nonparametric Item Response Theory. London, Sage (2002)zbMATHGoogle Scholar
  20. [20]
    Narayanan, A.: Computer generation of Dirichlet random vectors. Journal of Statistical Computation and Simulation, 36, 19–30 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    Newton, M.A., Raftery, A.E.: Approximate Bayesian inference with the weighted likelihood bootstrap. Journal of the Royal Statistical Society, B, 56, 3–48 (1994)zbMATHMathSciNetGoogle Scholar
  22. [22]
    Normandeau, S., Larivee, S., Roulin, J., Longeot, F.: The balance scale dilemma: Either the subject or the experimenter muddles through. Journal of Genetic Psychology, 150, 237–250 (1989)Google Scholar
  23. [23]
    Sanders, K., Hoijtink, H.: Androgynie bestaat [Androgyny exists]. Nederlands Tijdschrift voor de Psychologie, 47, 123–133 (1992)Google Scholar
  24. [24]
    Siegler, R.S.: Developmental sequences within and between concepts. Monographs of the Society for Research in Child Development, 46, 2 (Serial No. 189) (1981)CrossRefGoogle Scholar
  25. [25]
    Terman, L., Miles, C.C.: Sex and Personality. Studies in Masculinity and Femininity. New York, McGraw-Hill (1936)Google Scholar
  26. [26]
    Vermunt, J.K.: The use of restricted latent class models for defining and testing nonparametric and parametric IRT models. Applied Psychological Measurement, 25, 283–294 (2001)CrossRefMathSciNetGoogle Scholar
  27. [27]
    Vermunt, J.K., Magidson, J.: Latent class analysis. In: Lewis-Beck, M., Bryman, A., Liao, T.F. (eds) The Sage Encyclopedia of Social Science Research Methods. London, Sage (2004)Google Scholar
  28. [28]
    Zeger, S.L., Karim, M.R.: Generalized linear models with random effects: A Gibbs sampling approach. Journal of the American Statistical Association, 86, 79–86 (1991)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Methodology and StatisticsUtrecht UniversityUtrechtthe Netherlands
  2. 2.Department of Developmental PsychologyUtrecht UniversityUtrechtthe Netherlands

Personalised recommendations