Skip to main content

Mesp-Family Genes Are Required for Segmental Patterning and Segmental Border Formation

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 638))

Abstract

Elaborate somite patterning is based on the dynamic gene regulation within the presomitic mesoderm (PSM) derived from the primitive streak and tailbud in the later stage embryo. Notch signaling and the regulators are major players involved in the all events required for the temporally and spatially coordinated somite formation. PSM can be subdivided at least two domains based on the regulation and maybe the function of genes expressed. In the posterior PSM, a basic-HLH protein Hes7 plays a central role to generate traveling wave of gene expression by negatively regulating the transcription of the target genes, which may lead defining soimte spacing and future segmental unit. In the anterior PSM, cells start to prepare segmental pattering by acquiring rostral or caudal identity of somite primordia and defining segmental border. In this process, Mesp2, another basic HLH protein plays a critical role. Genetic evidence is provided how Mesp2 regulates Notch signaling to establish segmental identity in the anterior PSM.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Howard K, Ingham. Regulatory interactions between the segmentation genes fushi tarazu, hairy and engrailed in the Drosophila blastoderm. Cell 1986; 44(6):949–57.

    Article  PubMed  CAS  Google Scholar 

  2. Palmeirim I, Henrique D, Ish-Horowicz D, Pourquié O. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 1997; 91(5):639–48.

    Article  PubMed  CAS  Google Scholar 

  3. Saga Y, Hata N, Koseki H, Taketo MM. Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev 1997; 11(14):1827–39.

    Article  PubMed  CAS  Google Scholar 

  4. Saga Y, Kitajima S, Miyagawa-Tomita S. Mesp 1 expression is the earliest sign of cardiovascular development. Trends Cardiovasc Med 2000; 10(8):345–52.

    Article  PubMed  CAS  Google Scholar 

  5. Saga Y. Genetic rescue of segmentation defect in MesP2-deficient mice by MesP1 gene replacement. Mech Dev 1998; 75(1–2):53–66.

    Article  PubMed  CAS  Google Scholar 

  6. Kitajima S, Takagi A, Inoue T, Saga Y. MesP1 and MesP2 are essential for the development of cardiac mesoderm. Development 2000; 127(15):3215–26.

    PubMed  CAS  Google Scholar 

  7. Takahashi Y, Koizumi K, Takagi A et al. Mesp 2 initiates somite segmentation through the Notch signalling pathway. Nat Genet 2000; 25(4):390–6.

    Article  PubMed  CAS  Google Scholar 

  8. Struhl G, Greenwald I. Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 1999; 398(6727):522–5.

    Article  PubMed  CAS  Google Scholar 

  9. De Strooper B et al. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain [see comments]. Nature 1999; 398(6727):518–22.

    Article  PubMed  Google Scholar 

  10. Saga Y, Takeda H. The making of the somite: molecular events in vertebrate segmentation. Nat Rev Genet 2001; 2(11):835–45.

    Article  PubMed  CAS  Google Scholar 

  11. Bessho Y, Sakata R, Komatsu S et al. Dynamic expression and essential functions of Hes7 in somite segmentation. Genes Dev, 2001; 15(20):2642–7.

    Article  PubMed  CAS  Google Scholar 

  12. Leitges M, Neidhardt L, Haenig B et al. The paired homeobox gene Uncx4.1 specifies pedicles, transverse processes and proximal ribs of the vertebral column. Development 2000; 127(11):2259–67.

    PubMed  CAS  Google Scholar 

  13. Mansouri A, Voss AK, Thomas T et al. Uncx4.1 is required for the formation of the pedicles and proximal ribs and acts upstream of Pax9. Development 2000; 127(11):2251–8.

    PubMed  CAS  Google Scholar 

  14. Takahashi Y, Inoue T, Gossler A, Saga Y. Feedback loops comprising Dll1, Dll3 and Mesp2 and differential involvement of Psen 1 are essential for rostrocaudal patterning of somites. Development 2003; 130(18):4259–68.

    Article  PubMed  CAS  Google Scholar 

  15. Hrabe de Angelis M, McIntyre J 2nd, Gossler A. Maintenance of somite borders in mice requires the Delta homologue DII1. Nature 1997; 386(6626):717–21.

    Article  PubMed  CAS  Google Scholar 

  16. Dunwoodie SL, Henrique D, Harrison SM, Beddington RS. Mouse Dll:3 a novel divergent Delta gene which may complement the function of other Delta homologues during early pattern formation in the mouse embryo. Development 1997; 124(16):3065–76.

    PubMed  CAS  Google Scholar 

  17. Morimoto M, Takahashi Y, Endo M, Saga Y. The Mesp2 transcription factor establishes segmental borders by suppressing Notch activity. Nature 2005; 435(7040):354–9.

    Article  PubMed  CAS  Google Scholar 

  18. Nakajima Y, Morimoto M, Takahashi Y et al. Identification of Epha4 enhancer required for segmental expression and the regulation by Mesp2. Development 2006; 133(13):2517–25.

    Article  PubMed  CAS  Google Scholar 

  19. Yasuhiko Y, Haraguchi S, Kitajima S et al. Tbx6-mediated Notch signaling controls somite-specific Mesp2 expression. Proc Natl Acad Sci USA 2006; 103(10):3651–6.

    Article  PubMed  CAS  Google Scholar 

  20. Takahashi Y, Kitajima S, Inoue T et al. Differential contributions of Mesp1 and Mesp2 to the epithelialization and rostro-caudal patterning of somites. Development 2005; 132(4):787–96.

    Article  PubMed  CAS  Google Scholar 

  21. Buchberger A, Seidl K, Klein C et al. cMeso-1, a novel bHLH transcription factor, is involved in somite formation in chicken embryos. Dev Biol 1998; 199(2):201–15.

    Article  PubMed  CAS  Google Scholar 

  22. Sparrow DB, Jen WC, Kotecha S et al. Thylacine 1 is expressed segmentally within the paraxial mesoderm of the Xenopus embryo and interacts with the Notch pathway. Development 1998; 125(11):2041–51.

    PubMed  CAS  Google Scholar 

  23. Sawada A, Fritz A, Jiang YJ et al. Zebrafish Mesp family genes, mesp-a and mesp-b are segmentally expressed in the presomitic mesoderm and Mesp-b confers the anterior identity to the developing somites. Development 2000; 127(8):1691–702.

    PubMed  CAS  Google Scholar 

  24. Nomura-Kitabayashi A, Takahashi Y, Kitajima S et al. Hypomorphic Mesp allele distinguishes establishment of rostrocaudal polarity and segment border formation in somitogenesis. Development 2002; 129:2473–81.

    PubMed  CAS  Google Scholar 

  25. Moreno TA, Kintner C. Regulation of segmental patterning by retinoic acid signaling during Xenopus somitogenesis. Dev Cell 2004; 6(2):205–18.

    Article  PubMed  CAS  Google Scholar 

  26. Whittock NV, Sparrow DB, Wouters MA et al. Mutated MESP2 causes spondylocostal dysostosis in humans. Am J Hum Genet 2004; 74(6):1249–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Saga, Y., Takahashi, Y. (2008). Mesp-Family Genes Are Required for Segmental Patterning and Segmental Border Formation. In: Maroto, M., Whittock, N.V. (eds) Somitogenesis. Advances in Experimental Medicine and Biology, vol 638. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09606-3_6

Download citation

Publish with us

Policies and ethics