Skip to main content

Old Wares and New: Five Decades of Investigation of Somitogenesis in Xenopus laevis

  • Chapter
Somitogenesis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 638))

  • 491 Accesses

Abstract

Somites are regular repeated structures formed in pairs on either side of the anterior-posterior axis of developing vertebrate embryos which give rise to all skeletal muscle of the body, the axial skeleton, the tendons and the dorsal dermis. Beginning in the middle of last century, somite formation has been extensively studied in the South African clawed frog (Xenopus laevis) using traditional embryological techniques. Recently, modern molecular methods have been applied to this system, producing substantial insights into the underlying molecular mechanisms driving these morphological events. In this review I discuss these new results in the context of the early embryological observations, looking at all levels of the process of somite formation, from the initial prepatterning of the presomitic mesoderm to the morphomechanical events required for the separation of each somite from the precursor tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nieuwkoop PD, Faber J. Normal table of Xenopus laevis (Daudin). New York: Garland: 1994.

    Google Scholar 

  2. Muntz L. Myogenesis in the trunk and leg during development of the tadpole of Xenopus laevis (Daudin 1802). J Embryol Exp Morphol 1975; 33:757–774.

    PubMed  CAS  Google Scholar 

  3. Kielbowna L. The formation of somites and early myotomal myogenesis in Xenopus laevis, Bombina variegata and Pelobates fuscus. J Embryol Exp Morphol 1981; 64:295–304.

    PubMed  CAS  Google Scholar 

  4. Hamilton L. The formation of somites in Xenopus. J Embryol Exp Morph 1969; 22:253–264.

    PubMed  CAS  Google Scholar 

  5. Youn BW, Malacinski GM. Somitogenesis in the amphibian Xenopus: scanning electron microscope analysis of intrasomitic cellular arrangements during somite rotation. J Embryol Exp Morphol 1981; 64:23–43.

    PubMed  CAS  Google Scholar 

  6. Keller R. The origin and morphogenesis of amphibian somites. Curr Top Dev Biol 2000; 47(183–246).

    Google Scholar 

  7. Chanoine C, Hardy S. Xenopus muscle development: from primary to secondary myogenesis. Dev Dyn 2003; 226:12–23.

    PubMed  Google Scholar 

  8. Hopwood N, Pluck A, Gurdon J. Xenopus Myf-5 marks early muscle cells and can activate muscle genes ectopically in early embryos. Development 1991; 111:551–560.

    PubMed  CAS  Google Scholar 

  9. Hopwood N, Pluck A, Gurdon J. MyoD expression in the forming somites is an early response to mesoderm induction in Xenopus embryos. EMBO J 1989; 8:3409–3417.

    PubMed  CAS  Google Scholar 

  10. Niehrs C, Keller R, Cho K et al. The homeobox gene goosecoid controls cell migration in Xenopus embryos. Cell 1993; 72:491–503.

    PubMed  CAS  Google Scholar 

  11. Jacobson A. Somitomeres: mesodermal segments of vertebrate embryos. Development 1988; 104 (Suppl):209–220.

    PubMed  Google Scholar 

  12. Pourquie O, Tam P. A nomenclature for prospective somites and phases of cyclic gene expression in the presomitic mesoderm. Dev Cell 2001; 1:619–620.

    PubMed  CAS  Google Scholar 

  13. Moreno T, Kintner C. Regulation of Segmental Patterning by Retinoic Acid Signaling during Xenopus Somitogenesis. Dev Cell 2004; 6:205–218.

    PubMed  CAS  Google Scholar 

  14. Davidson D. Segmentation in frogs. Development 1988; 104(Suppl):221–229.

    Google Scholar 

  15. Tam P, Meier S, Jacobson A. Differentiation of the metameric pattern in the embryonic axis of the mouse. II. Somitomeric organization of the presomitic mesoderm. Differentiation 1982; 21:109–122.

    PubMed  CAS  Google Scholar 

  16. Packard D. The influence of axial structures on chick somite formation. Dev Biol 1976; 53:36–48.

    PubMed  Google Scholar 

  17. Pearson M, Elsdale T. Somitogenesis in amphibian embryos. I. Experimental evidence for an interaction between two temporal factors in the specification of somite pattern. J Embryol Exp Morphol 1979; 51:27–50.

    PubMed  CAS  Google Scholar 

  18. Youn B, Keller R, Malacinski G. An atlas of notochord and somite morphogenesis in several anuran and urodelean amphibians. J Embryol Exp Morphol 1980; 59:223–247.

    PubMed  CAS  Google Scholar 

  19. Wilson P, Oster G, Keller R. Cell rearrangement and segmentation in Xenopus: direct observation of cultured explants. Development 1989; 105:155–166.

    PubMed  CAS  Google Scholar 

  20. Kulesa P, Fraser S. Cell dynamics during somite boundary formation revealed by time-lapse analysis. Science 2002; 298:991–995.

    PubMed  CAS  Google Scholar 

  21. Cooke J, Zeeman E. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J Theor Biol 1976; 58:455–476.

    PubMed  CAS  Google Scholar 

  22. Cooke J. A gene that resuscitates a theory—somitogenesis and a molecular oscillator. Trends Genet 1998; 14:85–88.

    PubMed  CAS  Google Scholar 

  23. Jen W, Wettstein D, Turner D et al. The Notch ligand, X-Delta-2, mediates segmentation of the paraxial mesoderm in Xenopus embryos. Development 1997; 124:1169–1178.

    PubMed  CAS  Google Scholar 

  24. Sparrow DB, Jen WC, Kotecha S et al. Thylacine 1 is expressed segmentally within the paraxial mesoderm of the Xenopus embryo and interacts with the Notch pathway. Development 1998; 125(11):2041–2051.

    PubMed  CAS  Google Scholar 

  25. Jen W, Gawantka V, Pollet N et al. Periodic repression of Notch pathway genes governs the segmentation of Xenopus embryos. Genes Dev 1999; 13:1486–1499.

    PubMed  CAS  Google Scholar 

  26. Cossins J, Vernon A, Zhang Y et al. Hes6 regulates myogenic differentiation. Development 2002; 129(9):2195–2207.

    PubMed  CAS  Google Scholar 

  27. Lai E. Notch signaling: control of cell communication and cell fate. Development 2004; 131:965–973.

    PubMed  CAS  Google Scholar 

  28. Coffman C, Harris W, Kintner C. Xotch, the Xenopus homolog of Drosophila notch. Science 1990; 249:1438–1441.

    PubMed  CAS  Google Scholar 

  29. Wu J, Wen L, Zhang W et al. The secreted product of Xenopus gene lunatic Fringe, a vertebrate signaling molecule. Science 1996; 273:355–358.

    PubMed  CAS  Google Scholar 

  30. Lamar E, Deblandre G, Wettstein D et al. Nrarp is a novel intracellular component of the Notch signaling pathway. Genes Dev 2001; 15:1885–1899.

    PubMed  CAS  Google Scholar 

  31. Kim S, Jen W, De Robertis E et al. The protocadherin PAPC establishes segmental boundaries during somitogenesis in xenopus embryos. Curr Biol 2000; 10:821–830.

    PubMed  CAS  Google Scholar 

  32. Davis R, Turner D, Evans L et al. Molecular targets of vertebrate segmentation: two mechanisms control segmental expression of Xenopus hairy2 during somite formation. Dev Cell 2001; 1:553–565.

    PubMed  CAS  Google Scholar 

  33. Nellesen D, Lai E, Posakony J. Discrete enhancer elements mediate selective responsiveness of enhancer of split complex genes to common transcriptional activators. Dev Biol 1999; 213:33–53.

    PubMed  CAS  Google Scholar 

  34. Gajewski M, Voolstra C. Comparative analysis of somitogenesis related genes of the hairy/Enhancer of split class in Fugu and zebrafish. BMC Genomics 2002; 3:21.

    PubMed  Google Scholar 

  35. Palmeirim I, Henrique D, Ish-Horowicz D et al. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 1997; 91:639–648.

    PubMed  CAS  Google Scholar 

  36. Ishibashi M, Ang S, Shiota K et al. Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix-loop-helix factors, premature neurogenesis and severe neural tube defects. Genes Dev 1995; 9:3136–3148.

    PubMed  CAS  Google Scholar 

  37. Cau E, Gradwohl G, Casarosa S et al. Hes genes regulate sequential stages of neurogenesis in the olfactory epithelium. Development 2000; 127:2323–2332.

    PubMed  CAS  Google Scholar 

  38. Donovan J, Kordylewska A, Jan Y et al. Tetralogy of fallot and other congenital heart defects in Hey2 mutant mice. Curr Biol 2002; 12:1605–1610.

    PubMed  CAS  Google Scholar 

  39. Sakata Y, Kamei C, Nakagami H et al. Ventricular septal defect and cardiomyopathy in mice lacking the transcription factor CHF1/Hey2. Proc Natl Acad Sci USA 2002; 99:16197–16202.

    PubMed  CAS  Google Scholar 

  40. Li Y, Fenger U, Niehrs C et al. Cyclic expression of esr9 gene in Xenopus presomitic mesoderm. Differentiation 2003; 71:83–89.

    PubMed  CAS  Google Scholar 

  41. Muller M, v Weizsacker E, Campos-Ortega J. Expression domains of a zebrafish homologue of the Drosophila pair-rule gene hairy correspond to primordia of alternating somites. Development 1996; 122:2071–2078.

    PubMed  CAS  Google Scholar 

  42. Sawada A, Fritz A, Jiang Y et al. Zebrafish Mesp family genes, mesp-a and mesp-b are segmentally expressed in the presomitic mesoderm and Mesp-b confers the anterior identity to the developing somites. Development 2000; 127:1691–1702.

    PubMed  CAS  Google Scholar 

  43. Hirata H, Yoshiura S, Ohtsuka T et al. Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 2002; 298:840–843.

    PubMed  CAS  Google Scholar 

  44. Elsdale T, Pearson M, Whitehead M. Abnormalities in somite segmentation following heat shock to Xenopus embryos. J Embryol Exp Morph 1976; 35:625–635.

    PubMed  CAS  Google Scholar 

  45. Dale J, Maroto M, Dequeant M et al. Periodic notch inhibition by lunatic fringe underlies the chick segmentation clock. Nature 2003; 421:275–278.

    PubMed  CAS  Google Scholar 

  46. Morales A, Yasuda Y, Ish-Horowicz D. Lunatic fringe expression is controlled during segmentation by a cyclic transcriptional enhancer responsive to notch signaling. Dev Cell 2002; 3:63–74.

    PubMed  CAS  Google Scholar 

  47. Cole S, Levorse J, Tilghman S et al. Clock regulatory elements control cyclic expression of Lunatic fringe during somitogenesis. Dev Cell 2002; 3:75–84.

    PubMed  CAS  Google Scholar 

  48. Deuchar E, Burgess A. Somite segmentation in amphibian embryos: is there a transmitted control mechanism? J Embryol Exp Morphol 1967; 17:349–358.

    Google Scholar 

  49. Dubrulle J, McGrew M, Pourquie O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 2001; 106:219–232.

    PubMed  CAS  Google Scholar 

  50. Sawada A, Shinya M, Jiang Y et al. Fgf/MAPK signalling is a crucial positional cue in somite boundary formation. Development 2001; 128:4873–4880.

    PubMed  CAS  Google Scholar 

  51. Aulehla A, Wehrle C, Brand-Saberi B et al. Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev Cell 2003; 4:395–406.

    PubMed  CAS  Google Scholar 

  52. Dubrulle J, Pourquie O. fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo. Nature 2004; 427:419–422.

    PubMed  CAS  Google Scholar 

  53. Hamblet N, Lijam N, Ruiz-Lozano P et al. Dishevelled 2 is essential for cardiac outflow tract development, somite segmentation and neural tube closure. Development 2002; 129:5827–5838.

    PubMed  CAS  Google Scholar 

  54. Maden M, Graham A, Zile M et al. Abnormalities of somite development in the absence of retinoic acid. Int J Dev Biol 2000; 44:151–159.

    PubMed  CAS  Google Scholar 

  55. Diez del Corral R, Olivera-Martinez I, Goriely A et al. Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation and segmentation during body axis extension. Neuron 2003; 40:65–79.

    PubMed  CAS  Google Scholar 

  56. Abu-Abed S, Dolle P, Metzger D et al. Developing with lethal RA levels: genetic ablation of Rarg can restore the viability of mice lacking Cyp26a1. Development 2003; 130:1449–1459.

    PubMed  CAS  Google Scholar 

  57. Niederreither K, Subbarayan V, Dolle P et al. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet 1999; 21:444–448.

    PubMed  CAS  Google Scholar 

  58. Niederreither K, Vermot J, Schuhbaur B et al. Embryonic retinoic acid synthesis is required for forelimb growth and anteroposterior patterning in the mouse. Development 2002; 129:3563–3574.

    PubMed  CAS  Google Scholar 

  59. Sakai Y, Meno C, Fujii H et al. The retinoic acid-inactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo. Genes Dev 2001; 15:213–225.

    PubMed  CAS  Google Scholar 

  60. Chen F, Cooney A, Wang Y et al. Cloning of a novel orphan receptor (GCNF) expressed during germ cell development. Mol Endocrinol 1994; 8:1434–1444.

    PubMed  CAS  Google Scholar 

  61. Barreto G, Borgmeyer U, Dreyer C. The germ cell nuclear factor is required for retinoic acid signaling during Xenopus development. Mech Dev 2003; 120:415–428.

    PubMed  CAS  Google Scholar 

  62. Chung A, Katz D, Pereira F et al. Loss of orphan receptor germ cell nuclear factor function results in cetopic development of the tail bud and a novel posterior truncation. Mol Cell Biol 2001; 21(2):663–77.

    PubMed  CAS  Google Scholar 

  63. Joseph E, Cassetta L. Mespo: a novel basic helic-loop-helix gene expressed in the presomitic mesoderm and posterior tailbud of Xenopus embryos. Mech Dev 1999; 82:191–194.

    PubMed  CAS  Google Scholar 

  64. Buchberger A, Bonneick S, Arnold H. Expression of the novel basic-helix-loop-helix transcription factor cMespo in presomitic mesoderm of chicken embryos. Mech Dev 2000; 97:223–226

    PubMed  CAS  Google Scholar 

  65. Yoon J, Moon R, Wold B. The bHLH class protein pMesogenin 1 can specify paraxial mesoderm phenotypes. Dev Biol 2000; 222:376–391.

    PubMed  CAS  Google Scholar 

  66. Yoo K, Kim C, Park H et al. Characterization and expression of a presomitic mesoderm-specific mespogene in zebrafish. Dev Genes Evol 2003; 213:203–206.

    PubMed  CAS  Google Scholar 

  67. Saga Y, Hata N, Koseki H et al. Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev 1997; 11:1827–1839.

    PubMed  CAS  Google Scholar 

  68. Nakajima Y, Morimoto M, Takahashi Y et al. Identification of Epha4 enhancer required for segmental expression and the regulation by Mesp2. Development 2006; 133:2517–2525.

    PubMed  CAS  Google Scholar 

  69. Johnson J, Rhee J, Parsons S et al. The anterior/posterior polarity of somites is disrupted in paraxis-deficient mice. Dev Biol 2001; 229:176–187.

    PubMed  CAS  Google Scholar 

  70. Wheelock M, Johnson K. Cadherins as modulators of cellular phenotype. Annu Rev Cell Dev Biol 2003; 19 (207–35).

    PubMed  CAS  Google Scholar 

  71. Giacomello E, Vallin J, Morali O et al. Type I cadherins are required for differentiation and coordinated rotation in Xenopus laevis somitogenesis. Int J Dev Biol 2002; 46:785–792.

    PubMed  CAS  Google Scholar 

  72. Kim S, Yamamoto A, Bouwmeester T et al. The role of paraxial protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation. Development 1998; 125:4681–4690.

    PubMed  CAS  Google Scholar 

  73. Levi G, Ginsberg D, Girault J et al. EP-cadherin in muscles and epithelia of Xenopus lacvis embryos. Development 1991; 113:1335–1344.

    PubMed  CAS  Google Scholar 

  74. Yamamoto A, Kemp C, Bachiller D et al. Mouse paraxial protocadherin is expressed in trunk mesoderm and is not essential for mouse development. Genesis 2000; 27:49–57.

    PubMed  CAS  Google Scholar 

  75. Rhee J, Takahashi Y, Saga Y et al. The protocadherin papc is involved in the organization of the epithelium along the segmental border during mouse somitogenesis. Dev Biol 2003; 254:248–261.

    PubMed  CAS  Google Scholar 

  76. Horikawa K, Radice G, Takeichi M et al. Adhesive subdivisions intrinsic to the epithelial somites. Dev Biol 1999; 215:182–189.

    PubMed  CAS  Google Scholar 

  77. Radice G, Rayburn H, Matsunami H et al. Developmental defects in mouse embryos lacking N-cadherin. Dev Biol 1997; 181:64–78.

    PubMed  CAS  Google Scholar 

  78. Linask K, Ludwig C, Han M et al. N-cadherin/catenin-mediated morphoregulation of somite formation. Dev Biol 1998; 202:85–102.

    PubMed  CAS  Google Scholar 

  79. Simonneau L, Broders F, Thiery J. N-cadherin transcripts in Xenopus laevis from early tailbud to tadpole. Dev Dyn 1992; 194:247–260.

    PubMed  CAS  Google Scholar 

  80. Kragtorp KA, Miller JR. Regulation of somitogenesis by Ena/VASP proteins and FAK during Xenopus development. Development 2006; 133:685–695.

    PubMed  CAS  Google Scholar 

  81. Martin B, Harland R. Hypaxial muscle migration during primary myogenesis in Xenopus laevis. Dev Biol 2001; 239:270–280.

    PubMed  CAS  Google Scholar 

  82. Kintner C. Effects of altered expresion of the neural cell adhesion molecule, N-CAM, on early neural development in Xenopus embryos. Neuron 1988; 1:545–555.

    PubMed  CAS  Google Scholar 

  83. Duband J, Dufour S, Hatta K et al. Adhesion molecules during somitogenesis in the avian embryo. J Cell Biol 1987; 104:1361–1374.

    PubMed  CAS  Google Scholar 

  84. Cremer H, Chazal G, Goridis C et al. NCAM is essential for axonal growth and fasciculation in the hippocampus. Mol Cell Neurosci 1997; 8:323–335.

    PubMed  CAS  Google Scholar 

  85. Brekken R, Sage E. SPARC, a matricellular protein: at the crossroads of cell-matrix communication. Matrix Biol 2001; 19:816–827.

    PubMed  CAS  Google Scholar 

  86. Nomura S, Hashmi S, McVey J et al. Evidence for positive and negative regulatory elements in the 5′-flanking sequence of the mouse sparc (osteonectin) gene. J Biol Chem 1989; 264:12201–12207.

    PubMed  CAS  Google Scholar 

  87. Delany A, Canalis E. Basic fibroblast growth factor destabilizes osteonectin mRNA in osteoblasts. Am J Physiol 1998; 274:C734–740.

    PubMed  CAS  Google Scholar 

  88. Purcell L, Gruia-Gray J, Scanga S et al. Developmental anomalies of Xenopus embryos following microinjection of SPARC antibodies. J Exp Zool 1993; 265:153–164.

    PubMed  CAS  Google Scholar 

  89. Murai K, Pasquale E. ‘Eph’ective signaling: forward, reverse and crosstalk. J Cell Sci 2003; 116:2823–2832.

    PubMed  CAS  Google Scholar 

  90. Cowan C, Henkemeyer M. Ephrins in reverse, park and drive. Trends Cell Biol 2002; 12:339–346.

    PubMed  CAS  Google Scholar 

  91. Krull C, Lansford R, Gale N et al. Interactions of Eph-related receptors and ligands confer rostrocaudal pattern to trunk neural crest migration. Curr Biol 1997; 7:571–580.

    PubMed  CAS  Google Scholar 

  92. Nieto M, Gilardi-Hebenstreit P, Charnay P et al. A receptor protein tyrosine kinase implicated in the segmental patterning of the hindbrain and mesoderm. Development 1992; 116:1137–1150.

    PubMed  CAS  Google Scholar 

  93. Wang H, Anderson D. Eph family transmembrane ligands can mediate repulsive guidance of trunk neural crest migration and motor axon outgrowth. Neuron 1997; 18:383–396.

    PubMed  CAS  Google Scholar 

  94. Baker R, Antin P. Ephs and ephrins during early stages of chick embryogenesis. Dev Dyn. 2003; 228:128–142.

    PubMed  CAS  Google Scholar 

  95. Durbin L, Brennan C, Shiomi K et al. Eph signaling is required for segmentation and differentiation of the somites. Genes Dev 1998; 12:3096–3109.

    PubMed  CAS  Google Scholar 

  96. Scales J, Winning R, Renaud C et al. Novel members of the eph receptor tyrosine kinase subfamily expressed during Xenopus development. Oncogene 1995; 11:1745–1752.

    PubMed  CAS  Google Scholar 

  97. Helbling P, Saulnier D, Robinson V et al. Comparative analysis of embryonic gene expression defines potential interaction sites for Xenopus EphB4 receptors with ephrin-B ligands. Dev Dyn 1999; 216:361–373.

    PubMed  CAS  Google Scholar 

  98. Barrios A, Poole R, Durbin L et al. Eph/Ephrin signaling regulates the mesenchymal-to-epithelial transition of the paraxial mesoderm during somite morphogenesis. Curr Biol 2003; 13:1571–1582.

    PubMed  CAS  Google Scholar 

  99. Dottori M, Hartley L, Galea M et al. EphA4 (Sek1) receptor tyrosine kinase is required for the development of the corticospinal tract. Proc Natl Acad Sci USA 1998; 95:13248–13253.

    PubMed  CAS  Google Scholar 

  100. Winning R, Sargent T. Pagliaccio, a member of the Eph family of receptor tyrosine kinase genes, has localized expression in a subset of neural crest and neural tissues in Xenopus laevis embryos. Mech Dev 1994; 46:219–229.

    PubMed  CAS  Google Scholar 

  101. Koyano-Nakagawa N, Kim J, Anderson D et al. Hes6 acts in a positive feedback loop with the neurogenins to promote neuronal differentiation. Development 2000; 127:4203–4216.

    PubMed  CAS  Google Scholar 

  102. Kondow A, Hitachi K, Ikegame T et al. Bowline, a novel protein localized to the presomitic mesoderm, interacts with Groucho/TLE in Xenopus. Int J Dev Biol 2006; 50:473–479.

    PubMed  CAS  Google Scholar 

  103. Rones M, Woda J, Mercola M et al. Isolation and characteriztion of Xenopus Hey-1: a downstream mediator of Notch signaling. Dev Dyn 2002; 225:554–560.

    PubMed  CAS  Google Scholar 

  104. Glinka A, Wu W, Delius H et al. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 1998; 391:357–362.

    PubMed  CAS  Google Scholar 

  105. de Souza F, Gawantka V, Gomez A et al. The zinc finger gene Xblimp1 controls anterior endomesodermal cell fate in Spemann’s organizer. EMBO J 1999; 18:6062–6072.

    PubMed  Google Scholar 

  106. Jouve C, Palmeirim I, Henrique D et al. Notch signalling is required for cyclic expression of the hairy-like gene HES1 in the presomitic mesoderm. Development 2000; 127:1421–1429.

    PubMed  CAS  Google Scholar 

  107. Leimeister C, Dale K, Fischer A et al. Oscillating expression of c-Hey2 in the presomitic mesoderm suggests that the segmentation clock may use combinatorial signaling through multiple interacting bHLH factors. Dev Biol 2000; 227:91–103.

    PubMed  CAS  Google Scholar 

  108. Jiang Y, Aerne B, Smithers L et al. Notch signalling and the synchronization of the somite segmentation clock. Nature 2000; 408:475–479.

    PubMed  CAS  Google Scholar 

  109. McGrew M, Dale J, Fraboulet S et al. The lunatic fringe gene is a target of the molecular clock linked to somite segmentation in avian embryos. Curr Biol 1998; 8:979–982.

    PubMed  CAS  Google Scholar 

  110. Forsberg H, Crozet F, Brown N. Waves of mouse Lunatic fringe expression, in four-hour cycles at two-hour intervals, precede somite boundary formation. Curr Biol 1998; 8:1027–1030.

    PubMed  CAS  Google Scholar 

  111. Dunwoodie S, Clements M, Sparrow D et al. Axial skeletal defects caused by mutation in the spondylocostal dysplasia/pudgy gene Dll3 are associated with disruption of the segmentation clock within the presomitic mesoderm. Development 2002; 129:1795–1806.

    PubMed  CAS  Google Scholar 

  112. Ishikawa A, Kitajima S, Takahashi Y et al. Mouse Nkdl, a Wnt antagonist, exhibits oscillatory genen expression in the PSM under the control of Notch signaling. Mech Dev 2004; 121:1443–1453.

    PubMed  CAS  Google Scholar 

  113. Bessho Y, Miyoshi G, Sakata R et al. Hes7: a bHLH-type repressor gene regulated by Notch and expressed in the presomitic mesoderm. Genes Cells 2001; 6:175–185.

    PubMed  CAS  Google Scholar 

  114. Bessho Y, Sakata R, Komatsu S et al. Dynamic expression and essential functions of Hes7 in somite segmentation. Genes Dev 2001; 15:2642–2647.

    PubMed  CAS  Google Scholar 

  115. Holley S, Geisler R, Nusslein-Volhard C. Control of her1 expression during zebrafish somitogenesis by a delta-dependent oscillator and an independent wave-front activity. Genes Dev 2000; 14:1678–1690.

    PubMed  CAS  Google Scholar 

  116. Oates A, Ho R. Hairy/E(spl)-related (Her) genes are central components of the segmentation oscillator and display redundancy with the Delta/Notch signaling pathway in the formation of anterior segmental boundaries in the zebrafish. Development 2000; 129:2929–2946.

    Google Scholar 

  117. Winkler C, Elmasri H, Klamt B et al. Characterization of hey bHLH genes in teleost fish. Dev Genes Evol 2003; 213:541–553.

    PubMed  CAS  Google Scholar 

  118. Dale JK, Malapert P, Chal J et al. Oscillations of the snail genes in the presomitic mesoderm coordinate segmental patterning and morphogenesis in vertebrate somitogenesis. Dev Cell 2006; 10:355–366.

    PubMed  CAS  Google Scholar 

  119. Davis R, Turner D. Vertebrate hairy and Enhancer of split related proteins: transcriptional repressors regulating cellular differentiation and embryonic patterning. Oncogene 2001; 20:8342–8357.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sparrow, D.B. (2008). Old Wares and New: Five Decades of Investigation of Somitogenesis in Xenopus laevis . In: Maroto, M., Whittock, N.V. (eds) Somitogenesis. Advances in Experimental Medicine and Biology, vol 638. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09606-3_4

Download citation

Publish with us

Policies and ethics