Skip to main content

Avian Somitogenesis: Translating Time and Space into Pattern

  • Chapter
Book cover Somitogenesis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 638))

Abstract

Vertebrates have a metameric bodyplan that is based on the presence of paired somites. Somites develop from the segmental plate in a cranio-caudal sequence. At the same time, new material is added from Hensen’s node, the primitive streak and the tail bud. In this way, the material residing in the segmental plate remains constant and comprises 12 prospective somites on each side. Prospective segment borders are not yet determined in the caudal segmental plate. Prior to segmentation, the cranial segmental plate undergoes epithelialization, which is controlled by signals from the neural tube and ectoderm. The bHLH transcription factor Paraxis is critically involved in this process. Formation of a new somite from the cranial end of the segmental plate is a highly controlled process involving complex cell movements in relation to each other. Hox genes specify regional identity of the somites and their derivatives. In the chicken a transposition of thoracic into cervical vertebrae has occurred as compared to the mouse. Transcription factors of the bHLH and homeodomain type also specify the cranio-caudal polarity and that of particular cell groups within the somites. According to segmentation models, somitogenesis is under the control of a “segmentation clock” in combination with a morphogen gradient. This hypothesis has recently found support from molecular data, especially the cycling expression of genes such as chairy1 and Lunatic Fringe, which depend on the Notch/Delta pathway of signal transduction. FGF8 has been described to be distributed along a cranio-caudal gradient. The first oscillating gene described shown to be independent of Notch is Axin2, encoding a negative regulator of the canonical Wnt pathway and a target of Wnt3a. Wnt3a and Axin2 show a similar distribution as FGF8 with high levels in the tailbud. The chick embryo has recently become accessible to molecular approaches such as overexpression by electroporation and RNA interference which can be expected to help elucidating some of the still open questions concerning somitogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Robertis EM, Evolutionary biology. The ancestry of segmentation. Nature 1997; 387(6628):25–6.

    Article  PubMed  Google Scholar 

  2. Bronner-Fraser M, Stern C. Effects of mesodermal tissues on avian neural crest cell migration. Dev Biol 1991; 143(2):213–7.

    Article  PubMed  CAS  Google Scholar 

  3. Christ B, Ordahl CP. Early stages of chick somite development. Anat Embryol (Berl) 1995; 191(5):381–96.

    Article  CAS  Google Scholar 

  4. Gamel AJ, Brand-Saberi B, Christ B. Halves of epithelial somites and segmental plate show distinct muscle differentiation behavior in vitro compared to entire somites and segmental plate. Dev Biol 1995: 172(2):625–39.

    Article  PubMed  CAS  Google Scholar 

  5. Pourquie O, Tam PP. A nomenclature for prospective somites and phases of cyclic gene expression in the presomitic mesoderm. Dev Cell 2001; 1(5):619–20.

    Article  PubMed  CAS  Google Scholar 

  6. Kochav S, Ginsburg M, Eyal-Giladi H. From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick. II. Microscopic anatomy and cell population dynamics. Dev Biol 1980; 79(2):296–308.

    Article  PubMed  CAS  Google Scholar 

  7. Selleck MA, Stern CD. Fate mapping and cell lineage analysis of Hensen’s node in the chick embryo. Development 1991; 112(2):615–26.

    PubMed  CAS  Google Scholar 

  8. Jouve C, Palmeirim I, Henrique D et al. Notch signalling is required for cyclic expression of the hairy-like gene HES1 in the presomitic mesoderm. Development 2000; 127(7):1421–9.

    PubMed  CAS  Google Scholar 

  9. Barrallo-Gimeno A, Nieto MA. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 2005; 132(14):3151–61.

    Article  PubMed  CAS  Google Scholar 

  10. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA. The transcription factor snail controls epithelial-mesenchymal transitions by repressng E-cadherin expression. Nat Cell Biol 2000; 2(2):76–83.

    Article  PubMed  CAS  Google Scholar 

  11. Keynes RJ, Stern CD. Mechanisms of vertebrate segmentation. Development 1988; 103(3):413–29.

    PubMed  CAS  Google Scholar 

  12. Tam PP, Trainor PA. Specification and segmentation of the paraxial mesoderm. Anat Embryol(Berl) 1994; 189(4):275–305.

    CAS  Google Scholar 

  13. Marcelle C, Lesbros C, Linker C. Results and problems in cell differentiation. In: Brand-Saberi B, ed. Vertebrate Myogenesis. Heidelberg, Berlin: Springer-Verlag, 2002:81–108.

    Google Scholar 

  14. Tolwinski NS, Wieschaus E. A nuclear function for armadillo/beta-catenin. PLoS Biol 2004; 2(4):E95.

    Article  Google Scholar 

  15. Burgess R, Cserjesi P, Ligon KL, et al. Paraxis: a basic helix-loop-helix protein expressed in paraxial mesoderm and developing somites. Dev Biol 1995; 168(2):296–306.

    Article  PubMed  CAS  Google Scholar 

  16. Burgess R, Rawls A, Brown D, et al. Requirement of the paraxis gene for somite formation and musculoskeletal patterning. Nature 1996; 384(6609):570–3.

    Article  PubMed  CAS  Google Scholar 

  17. Jacobson AG, Meier S. Somites in developing embryos. In: Bellairs R, Ede DA, Walsh DA, eds. New York: Plenum, 1980.

    Google Scholar 

  18. Jacobson AG. Somitomeres: mesodermal segments of vertebrate embryos. Development 1988; 104 Suppl: 209–20.

    PubMed  Google Scholar 

  19. Meier S. Development of the chick embryo mesoblast. Formation of the embryonic axis and establishment of the metameric pattern. Dev Biol 1979; 73(1):24–45.

    Article  PubMed  CAS  Google Scholar 

  20. Tam PP, Meier S, Jacobson AG. Differentiation of the metameric pattern in the embryonic axis of the mouse. II. Somitomeric organization of the presomitic mesoderm. Differentiation 1982; 21(2):109–22.

    Article  PubMed  CAS  Google Scholar 

  21. Packard DS, Jr. The influence of axial structures on chick somite formation. Dev Biol 1976; 53(1):36–48.

    Article  PubMed  Google Scholar 

  22. Aulehla A, Wehrle C, Brand-Saberi B, et al. Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev Cell 2003; 4(3):395–406.

    Article  PubMed  CAS  Google Scholar 

  23. Saga Y, Hata N, Koseki H, et al. Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev 1997; 11(14):1827–39.

    Article  PubMed  CAS  Google Scholar 

  24. Christ B, Brand-Saberi B, Grim M, et al. Local signalling in dermomyotomal cell type specification. Anat Embryol(Berl) 1992; 186(5):505–10.

    CAS  Google Scholar 

  25. Conlon RA, Reaume AG, Rossant J. Notch 1 is required for the coordinate segmentation of somites. Development 1995; 121(5):1533–45.

    PubMed  CAS  Google Scholar 

  26. Bellairs R, Curtis AS, Sanders EJ. Cell adhesiveness and embryonic differentiation. J Embryol Exp Morphol 1978; 46:207–13.

    PubMed  CAS  Google Scholar 

  27. Bellairs R, Sanders EJ, Portch PA. Behavioural properties of chick somitic mesoderm and lateral plate when explanted in vitro. J Embryol Exp Morphol 1980; 56:41–58.

    PubMed  CAS  Google Scholar 

  28. Beloussov LV, Naumidi II. Cell contacts and rearrangements preceding somitogenesis in chick embryo. Cell Differ 1983; 12(4):191–204.

    Article  PubMed  CAS  Google Scholar 

  29. Cheney CM, Lash JW. An increase in cell-cell adhesion in the chick segmental plate results in a meristic pattern. J Embryol Exp Morphol 1984; 79:1–10.

    PubMed  CAS  Google Scholar 

  30. Radice GL, Rayburn H, Matsunami H, et al. Developmental defects in mouse embryos lacking N-cadherin. Dev Biol 1997; 181(1):64–78.

    Article  PubMed  CAS  Google Scholar 

  31. Kulesa PM, Fraser SE. Cell dynamics during somite boundary formation revealed by time-lapse analysis. Science 2002; 298(5595):991–5.

    Article  PubMed  CAS  Google Scholar 

  32. Tonegawa A, Takahashi Y. Somitogenesis controlled by Noggin. Dev Biol 1998; 202(2):172–82.

    Article  PubMed  CAS  Google Scholar 

  33. Sato Y, Yasuda K, Takahashi Y. Morphological boundary forms by a novel inductive event mediated by Lunatic fringe and Notch during somitic segmentation. Development 2002; 129(15):3633–44.

    PubMed  CAS  Google Scholar 

  34. Lecourtois M, Schweisguth F. Indirect evidence for Delta-dependent intracellular processing of notch in Drosophila embryos. Curr Biol 1998; 8(13):771–4.

    Article  PubMed  CAS  Google Scholar 

  35. Wallberg AE, Pedersen K, Lendahl U, et al. p300 and PCAF act cooperatively to mediate transcriptional activation from chromatin templates by notch intracellular domains in vitro. Mol Cell Biol 2002; 22(22):7812–9.

    Article  PubMed  CAS  Google Scholar 

  36. Evrard YA, Lun Y, Aulehla A, et al. lunatic fringe is an essential mediator of somite segmentation and patterning. Nature 1998; 394(6691):377–81.

    Article  PubMed  CAS  Google Scholar 

  37. Dale JK, Malapert P, Chal J, et al. Oscillations of the snail genes in the presomitie mesoderm coordinate segmental patterning and morphogenesis in vertebrate somitogenesis. Dev Cell 2006; 10(3):355–66.

    Article  PubMed  CAS  Google Scholar 

  38. Schroeter EH, Kisslinger JA, Kopan R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 1998; 393(6683):382–6.

    Article  PubMed  CAS  Google Scholar 

  39. Struhl G, Adachi A. Nuclear access and action of notch in vivo. Cell 1998; 93(4):649–60.

    Article  PubMed  CAS  Google Scholar 

  40. Lewis EB. A gene complex controlling segmentation in Drosophila. Nature 1978; 276(5688):565–70.

    Article  PubMed  CAS  Google Scholar 

  41. Akam M. Hox and HOM: homologous gene clusters in insects and vertebrates. Cell 1989; 57(3):347–9.

    Article  PubMed  CAS  Google Scholar 

  42. Kappen C, Ruddle FH. Evolution of a regulatory gene family: HOM/HOX genes. Curr Opin Genet Dev 1993; 3(6):931–8.

    Article  PubMed  CAS  Google Scholar 

  43. Duboule D. The function of Hox genes in the morphogenesis of the vertebrate limb. Ann Genet 1993; 36(1):24–9.

    PubMed  CAS  Google Scholar 

  44. Gaunt SJ. Expression patterns of mouse Hox genes: clues to an understanding of developmental and evolutionary strategies. Bioessays 1991; 13(10):505–13.

    Article  PubMed  CAS  Google Scholar 

  45. Gaunt SJ, Strachan L. Forward spreading in the establishment of a vertebrate Hox expression boundary: the expression domain separates into anterior and posterior zones, and the spread occurs across implanted glass barriers. Dev Dyn 1994; 199(3):229–40.

    PubMed  CAS  Google Scholar 

  46. Kessel M, Gruss P. Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell 1991; 67(1):89–104.

    Article  PubMed  CAS  Google Scholar 

  47. Burke AC. Hox Genes and the global patterning of the somitic mesoderm. In: Ordahl C, ed. Somitogenesis. San Diego: Academic Press, 2000:155ff.

    Google Scholar 

  48. Graba Y, Aragnol D, Pradel J. Drosophila Hox complex downstream targets and the function of homeotic genes. Bioessays 1997; 19(5):379–88.

    Article  PubMed  CAS  Google Scholar 

  49. Iimura T, Pourquie O. Collinear activation of Hoxb genes during gastrulation is linked to mesoderm cell ingression. Nature 2006; 442(7102):568–71.

    Article  PubMed  CAS  Google Scholar 

  50. Remak R. Untersuchungen über die Entwicklung der Wirbelthiere. Erste Lieferung über die Entwicklung des Hühnchens im El. Berlin: Reimer, 1850.

    Google Scholar 

  51. Schultze O. Ueber embryonale und bleibende Segmentierung. Verh. Anat. Ges. 1896.

    Google Scholar 

  52. Williams LW. The somites of the chick. Am J Anat 1910; 11:55–100.

    Article  Google Scholar 

  53. Sensinig EC. The early development of the human vertebral column. Contr Embryol Carnegie Inst Publ 1949; 33(583):21–41.

    Google Scholar 

  54. von Ebner V. Urwirbel und Neugliederung der Wirbelsäule. Sitzungsber. Akad. Wiss. Wien Math. Naturwiss. Kl. Abt. 1888; 97(3):194–206.

    Google Scholar 

  55. Beresford B. Brachial muscles in the chick embryo: the fate of individual somites. J Embryol Exp Morphol 1983; 77:99–116.

    PubMed  CAS  Google Scholar 

  56. Bagnall KM, Higgins SJ, Sanders EJ. The contribution made by a single somite to the vertebral column: experimental evidence in support of resegmentation using the chick-quail chimaera model. Development 1988; 103(1):69–85.

    PubMed  CAS  Google Scholar 

  57. Huang R, Zhi Q, Neubuser A, et al. Function of somite and somitocoele cells in the formation of the vertebral motion segment in avian embryos. Acta Anat (Basel) 1996; 155(4):231–41.

    Article  CAS  Google Scholar 

  58. Huang R, Zhi Q, Schmidt C, et al. Sclerotomal origin of the ribs. Development 2000; 127(3):527–32.

    PubMed  CAS  Google Scholar 

  59. Holland SJ, Gale NW, Gish GD, et al. Juxtamembrane tyrosine residues couple the Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells. EMBO J 1997; 16(13):3877–88.

    Article  PubMed  CAS  Google Scholar 

  60. Parkyn G, Mootoosamy RC, Cheng L, et al. Hypaxial muscle development. In: Brand-Saberi B, ed. Vertebrate Myogenesis. Heidelberg, Berlin: Springer-Verlag, 2002:127–41.

    Google Scholar 

  61. Brohmann H, Jagla K, Birchmeier C. The role of Lbx1 in migration of muscle precursor cells. Development 2000;127(2):437–45.

    PubMed  CAS  Google Scholar 

  62. Schmidt C, Christ B, Maden M, et al. Regulation of Epha4 expression in paraxial and lateral plate mesoderm by ectoderm-derived signals. Dev Dyn 2001; 220(4):377–86.

    Article  PubMed  CAS  Google Scholar 

  63. Holland SJ, Peles E, Pawson T, et al. Cell-contact-dependent signalling in axon growth and guidance: Eph receptor tyrosine kinases and receptor protein tyrosine phosphatase beta. Curr Opin Neurobiol 1998; 8(1):117–27.

    Article  PubMed  CAS  Google Scholar 

  64. O’Leary DD, Wilkinson DG. Eph receptors and ephrins in neural development. Curr Opin Neurobiol 1999; 9(1):65–73.

    Article  PubMed  CAS  Google Scholar 

  65. Dottori M, Hartley L, Galea M, et al. EphA4(Sek1) receptor tyrosine kinase is required for the development of the corticospinal tract. Proc Natl Acad Sci U S A 1998; 95(22):13248–53.

    Article  PubMed  CAS  Google Scholar 

  66. Helmbacher F, Schneider-Maunoury S, Topilko P, et al. Targeting of the EphA4 tyrosine kinase receptor affects dorsal/ventral pathfinding of limb motor axons. Development 2000; 127(15):3313–24.

    PubMed  CAS  Google Scholar 

  67. Schrägle J, Huang R, Christ B, et al. Control of the temporal and spatial Uncx4. 1 expression in the paraxial mesoderm of avian embryos. Anat Embryol(Berl) 2004; 208(4):323–32.

    Google Scholar 

  68. Mansouri A, Voss AK, Thomas T, et al. Uncx4. 1 is required for the formation of the pedicles and proximal ribs and acts upstream of Pax9. Development 2000; 127(11):2251–8.

    PubMed  CAS  Google Scholar 

  69. Buchberger A, Bonneick S, Klein C, et al. Dynamic expression of chicken cMeso2 in segmental plate and somites. Dev Dyn 2002; 223(1):108–18.

    Article  PubMed  CAS  Google Scholar 

  70. Buchberger A, Seidl K, Klein C, et al. cMeso-1, a novel bHLH transcription factor, is involved in somite formation in chicken embryos. Dev Biol 1998; 199(2):201–15.

    Article  PubMed  CAS  Google Scholar 

  71. Holt CE, Lemaire P, Gurdon JB. Cadherin-mediated cell interactions are necessary for the activation of MyoD in Xenopus mesoderm. Proc Natl Acad Sci U S A 1994; 91(23):10844–8.

    Article  PubMed  CAS  Google Scholar 

  72. George-Weinstein M, Gerhart J, Blitz J, et al. N-cadherin promotes the commitment and differentiation of skeletal muscle precursor cells. Dev Biol 1997; 185(1):24–24.

    Article  Google Scholar 

  73. Healy C, Uwanogho D, Sharpe PT. Regulation and role of Sox9 in cartilage formation. Dev Dyn 1999; 215(1):69–78.

    Article  PubMed  CAS  Google Scholar 

  74. Zeng L, Kempf H, Murtaugh LC, et al. Shh establishes an Nkx3.2/Sox9 autoregulatory loop that is maintained by BMP signals to induce somitic chondrogenesis. Genes Dev 2002; 16(15):1990–2005.

    Article  PubMed  CAS  Google Scholar 

  75. Williams BA, Ordahl CP. Pax-3 expression in segmental mesoderm marks early stages in myogenic cell specification. Development 1994; 120(4):785–96.

    PubMed  CAS  Google Scholar 

  76. Suetsugu R, Sato Y, Takahashi Y. Pax 2 expression in mesodermal segmentation and its relationship with EphA4 and Lunatic-fringe during chicken somitogenesis. Gene Expr Patterns 2002; 2(1–2):157–61.

    Article  PubMed  CAS  Google Scholar 

  77. Suetsugu R, Sato Y, Takahashi Y. Pax 2 expression in mesodermal segmentation and its relationship with EphA4 and Lunatic-fringe during chicken somitogenesis. Mech Dev 2002; 119 Suppl 1:S155–9.

    Article  PubMed  Google Scholar 

  78. Brophy PD, Lang KM, Dressler GR. The secreted frizzled related protein 2 (SFRP2) gene is a target of the Pax2 transcription factor. J Biol Chem 2003; 278(52):52401–5.

    Article  PubMed  CAS  Google Scholar 

  79. Satoh W, Gotoh T, Tsunematsu Y, et al. Sfrp1 and Sfrp2 regulate anteroposterior axis elongation and somite segmentation during mouse embryogenesis. Development 2006; 133(6):989–99.

    Article  PubMed  CAS  Google Scholar 

  80. Wagner J, Schmidt C, Nikowits W, Jr., Christ B. Compartmentalization of the somite and myogenesis in chick embryos are influenced by wnt expression. Dev Biol 2000; 228(1):86–94.

    Article  PubMed  CAS  Google Scholar 

  81. Linker C, Lesbros C, Stark MR, Marcelle C. Intrinsic signals regulate the initial steps of myogenesis in vertebrates. Development 2003; 130(20):4797–807.

    Article  PubMed  CAS  Google Scholar 

  82. Bellairs R. The Development Of Somites In The Chick Embryo. J Embryol Exp Morphol 1963: 11:697–714.

    PubMed  CAS  Google Scholar 

  83. Packard DS, Jr., Zheng RZ, Turner DC. Somite pattern regulation in the avian segmental plate mesoderm. Development 1993; 117(2):779–91.

    PubMed  Google Scholar 

  84. Sosic D, Brand-Saberi B, Schmidt C, Christ B, Olson EN. Regulation of paraxis expression and somite formation by ectoderm-and neural tube-derived signals. Dev Biol 1997; 185(2):229–43.

    Article  PubMed  CAS  Google Scholar 

  85. Cooke J, Zeeman EC. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J Theor Biol 1976; 58(2):455–76.

    Article  PubMed  CAS  Google Scholar 

  86. Kerszberg M, Wolpert L. A clock and trail model for somite formation, specialization and polarization. J Theor Biol 2000; 205(3):505–10.

    Article  PubMed  CAS  Google Scholar 

  87. Meinhardt H. Hierarchical inductions of cell states: a model for segmentation in Drosophila. J Cell Sci Suppl 1986; 4:357–81.

    PubMed  CAS  Google Scholar 

  88. Stern CD, Fraser SE, Keynes RJ, Primmett DR. A cell lineage analysis of segmentation in the chick embryo. Development 1988; 104 Suppl:231–44.

    PubMed  CAS  Google Scholar 

  89. Cooke J. Control of somite number during morphogenesis of a vertebrate, Xenopus laevis. Nature 1975; 254(5497):196–9.

    Article  PubMed  CAS  Google Scholar 

  90. Slack JMW. The problems of early development and the means of their solution. In From Egg to Embryo: Determinative Events in Early Development. Cambridge: Cambridge Univ Press, 1983:214ff.

    Google Scholar 

  91. Slack JMW. Regional Specification in Early Development. Cambridge: Cambridge Univ Press, 1991.

    Google Scholar 

  92. Palmeirim I, Henrique D, Ish-Horowicz D, Pourquie O. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 1997; 91(5):639–48.

    Article  PubMed  CAS  Google Scholar 

  93. Aulehla A, Johnson RL. Dynamic expression of lunatic fringe suggests a link between notch signaling and an autonomous cellular oscillator driving somite segmentation. Dev Biol 1999; 207(1):49–61.

    Article  PubMed  CAS  Google Scholar 

  94. McGrew MJ, Dale JK, Fraboulet S, Pourquie O. The lunatic fringe gene is a target of the molecular clock linked to somite segmentation in avian embryos. Curr Biol 1998; 8(17):979–82.

    Article  PubMed  CAS  Google Scholar 

  95. Forsberg H, Crozet F, Brown NA. Waves of mouse Lunatic fringe expression, in four-hour cycles at two-hour intervals, precede somite boundary formation. Curr Biol 1998; 8(18):1027–30.

    Article  PubMed  CAS  Google Scholar 

  96. Jiang YJ, Aerne BL, Smithers L, Haddon C, Ish-Horowicz D, Lewis J. Notch signalling and the synchronization of the somite segmentation clock. Nature 2000; 408(6811):475–9.

    Article  PubMed  CAS  Google Scholar 

  97. Holley SA, Geisler R, Nusslein-Volhard C. Control of herl expression during zebrafish somitogenesis by a delta-dependent oscillator and an independent wave-front activity. Genes Dev 2000; 14(13):1678–90.

    PubMed  CAS  Google Scholar 

  98. Holley SA, Julich D, Rauch GJ, Geisler R, Nusslein-Volhard C. her1 and the notch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis. Development 2002; 129(5):1175–83.

    PubMed  CAS  Google Scholar 

  99. Itoh M, Kim CH, Palardy G, Oda T, Jiang YJ, Maust D, Yeo SY, Lorick K, Wright GJ, Ariza-McNaughton L, Weissman AM, Lewis J, Chandrasekharappa SC, Chitnis AB. Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. Dev Cell 2003; 4(1):67–82.

    Article  PubMed  CAS  Google Scholar 

  100. van Eeden FJ, Granato M, Schach U, Brand M, Furutani-Seiki M, Haffter P, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, Kelsh RN, Mullins MC, Odenthal J, Warga RM, Nusslein-Volhard C. Genetic analysis of fin formation in the zebrafish, Danio rerio. Development 1996; 123:255–62.

    PubMed  Google Scholar 

  101. Henry CA, Urban MK, Dill KK, Merlie JP, Page MF, Kimmel CB, Amacher SL. Two linked hairy/Enhancer of split-related zebrafish genes, her1 and her7, function together to refine alternating somite boundaries. Development 2002; 129(15):3693–704.

    PubMed  CAS  Google Scholar 

  102. Oates AC, Ho RK. Hairy/E (spl)-related(Her) genes are central components of the segmentation oscillator and display redundancy with the Delta/Notch signaling pathway in the formation of anterior segmental boundaries in the zebrafish. Development 2002; 129(12):2929–46.

    PubMed  CAS  Google Scholar 

  103. Sieger D, Tautz D, Gajewski M. The role of Suppressor of Hairless in Notch mediated signalling during zebrafish somitogenesis. Mech Dev 2003; 120(9):1083–94.

    Article  PubMed  CAS  Google Scholar 

  104. Gajewski M, Sieger D, Alt B, Leve C, Hans S, Wolff C, Rohr KB, Tautz D. Anterior and posterior waves of cyclic her1 gene expression are differentially regulated in the presomitic mesoderm of zebrafish. Development 2003; 130(18):4269–78.

    Article  PubMed  CAS  Google Scholar 

  105. Geling A, Steiner H, Willem M, Bally-Cuif L, Haass C. A gamma-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep 2002; 3(7):688–94.

    Article  PubMed  CAS  Google Scholar 

  106. Oka C, Nakano T, Wakeham A, de la Pompa JL, Mori C, Sakai T, Okazaki S, Kawaichi M, Shiota K, Mak TW, Honjo T. Disruption of the mouse RBP-J kappa gene results in early embryonic death. Development 1995; 121(10):3291–301.

    PubMed  CAS  Google Scholar 

  107. Bessho Y, Miyoshi G, Sakata R, Kageyama R. Hes7: a bHLH-type repressor gene regulated by Notch and expressed in the presomitic mesoderm. Genes Cells 2001; 6(2):175–85.

    Article  PubMed  CAS  Google Scholar 

  108. Hrabe de Angelis M, McIntyre J, 2nd, Gossler A. Maintenance of somite borders in mice requires the Delta homologue DII1. Nature 1997; 386(6626):717–21.

    Article  PubMed  CAS  Google Scholar 

  109. Kusumi K, Sun ES, Kerrebrock AW, Bronson RT, Chi DC, Bulotsky MS, Spencer JB, Birren BW, Frankel WN, Lander ES. The mouse pudgy mutation disrupts Delta homologue Dll3 and initiation of early somite boundaries. Nat Genet 1998; 19(3):274–8.

    Article  PubMed  CAS  Google Scholar 

  110. Wong PC, Zheng H, Chen H, Becher MW, Sirinathsinghji DJ, Trumbauer ME, Chen HY, Price DL, Van der Pleog LH, Sisodia SS. Presenilin 1 is required for Notch 1 and DII1 expression in the paraxial mesoderm. Nature 1997; 387(6630):288–92.

    Article  PubMed  CAS  Google Scholar 

  111. Zhang N, Gridley T. Defects in somite formation in lunatic fringe-deficient mice. Nature 1998; 394(6691):374–7.

    Article  PubMed  CAS  Google Scholar 

  112. Dubrulle J, McGrew MJ, Pourquie O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 2001; 106(2):219–32.

    Article  PubMed  CAS  Google Scholar 

  113. Dubrulle J, Pourquie O. fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo. Nature 2004; 427(6973):419–22.

    Article  PubMed  CAS  Google Scholar 

  114. Takada S, Stark KL, Shea MJ, Vassileva G, McMahon JA, McMahon AP. Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev 1994; 8(2):174–89.

    Article  PubMed  CAS  Google Scholar 

  115. Greco TL, Takada S, Newhouse MM, McMahon JA, McMahon AP, Camper SA. Analysis of the vestigial tail mutation demonstrates that Wnt-3a gene dosage regulates mouse axial development. Genes Dev 1996; 10(3):313–24.

    Article  PubMed  CAS  Google Scholar 

  116. Fisher DA, Kivimae S, Hoshino J, Suriben R, Martin PM, Baxter N, Cheyette BN. Three Dact gene family members are expressed during embryonic development and in the adult brains of mice. Dev Dyn 2006; 235(9):2620–30.

    Article  PubMed  CAS  Google Scholar 

  117. Suriben R, Fisher DA, Cheyette BN. Dact1 presomitic mesoderm expression oscillates in phase with Axin2 in the somitogenesis clock of mice. Dev Dyn 2006; 235(11):3177–83.

    Article  PubMed  CAS  Google Scholar 

  118. Dale JK, Maroto M, Dequeant ML, Malapert P, McGrew M, Pourquie O. Periodic notch inhibition by lunatic fringe underlies the chick segmentation clock. Nature 2003; 421(6920):275–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Brand-Saberi, B., Rudloff, S., Gamel, A.J. (2008). Avian Somitogenesis: Translating Time and Space into Pattern. In: Maroto, M., Whittock, N.V. (eds) Somitogenesis. Advances in Experimental Medicine and Biology, vol 638. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09606-3_2

Download citation

Publish with us

Policies and ethics