Skip to main content

XPF/ERCC4 and ERCC1: Their Products and Biological Roles

  • Chapter
Molecular Mechanisms of Xeroderma Pigmentosum

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 637))

Abstract

At the time of writing, a general search of the literature reveals 259 references that specifically refer to XPF/ERCC4. This puts XPF/ERCC4 around the half way point in a ranking for each of the XP groups based on the number of literature citations in which the specific acronym can be found in the title or abstract. Although such a ranking scheme is somewhat contrived, it is interesting to note that the number of citations for XPF/ERCC4 is very close to that of its mechanistic counterpart, XPG (this relationship is discussed more fully below). The large number of references citing XPF/ERCC4 is reflective of the fact that the cellular roles for Nucleotide Excision Repair (NER) proteins are far more complex than at first imagined and the examination of these diverse functions has begun in earnest taking advantage of a collection of high quality reagents that include antibodies, cell lines and purified proteins and protein complexes. In this chapter we review what has been learned about the cellular roles for XPF/ERCC4. The story is an interesting one, but one far from complete with many questions remaining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sijbers AM, de Laat WL, Ariza RR et al. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell 1996; 86(5):811–822.

    Article  PubMed  CAS  Google Scholar 

  2. Sijbers AM, van Voorst Vader PC, Snoek JW et al. Homozygous R788W point mutation in the XPF gene of a patient with Xeroderma pigmentosum and late-onset neurologic disease. J Invest Dermatol 1998; 110(5):832–836.

    Article  PubMed  CAS  Google Scholar 

  3. Matsumura YC, Nishigori T, Yagi S et al. Characterization of molecular defects in xeroderma pigmentosum group F in relation to its clinically mild symptoms. Hum Mol Genet 1998; 7(6):969–974.

    Article  PubMed  CAS  Google Scholar 

  4. Kondo S, Mamada A, Miyamoto C et al. Late onset of skin cancers in 2 xeroderma pigmentosum group F siblings and a review of 30 Japanese Xeroderma pigmentosum patients in groups D, E and F. Photodermatol 1989; 6(2):89–95.

    PubMed  CAS  Google Scholar 

  5. Arase S, Kozuka T, Tanaka K et al. A sixth complementation group in Xeroderma pigmentosum. Mutat Res 1979; 59(1):143–146.

    PubMed  CAS  Google Scholar 

  6. Fujiwara Y, Ichihashi M, Uehara Y et al. Xeroderma pigmentosum groups C and F: additional assignments and a review of the subjects in Japan. J Radiat Res (Tokyo) 1985; 26(4):443–449.

    Article  CAS  Google Scholar 

  7. Fujiwara Y, Uehara Y, Ichihashi M et al. Xeroderma pigmentosum complementation group F: more assignments and repair characteristics. Photochem Photobiol 1985; 41(5):629–634.

    Article  PubMed  CAS  Google Scholar 

  8. Hayakawa H, Ishizaki K, Inoue M et al. Repair of ultraviolet radiation damage in Xeroderma pigmentosum cells belonging to complementation group F. Mut Res 1981; 80(2):381–388.

    CAS  Google Scholar 

  9. Nishigori C, Ishizaki K, Takebe H et al. A case of Xeroderma pigmentosum group F with late onset of clinical symptoms. Arch Dermatol 1986; 122(5):510–511.

    Article  PubMed  CAS  Google Scholar 

  10. Takebe H, Nishigori C, Satoh Y. Genetics and skin cancer of Xeroderma pigmentosum in Japan. Jpn J Cancer Res 1987; 78(11):1135–1143.

    PubMed  CAS  Google Scholar 

  11. Yamamura K, Ichihashi M, Hiramoto T et al. Clinical and photobiological characteristics of Xeroderma pigmentosum complementation group F: a review of cases from Japan. Br J Dermatol 1989; 121(4):471–480.

    Article  PubMed  CAS  Google Scholar 

  12. Itoh T, Watanabe H, Yamaizumi M et al. A young woman with Xeroderma pigmentosum complementation group F and a morphoeic basal cell carcinoma. Br J Dermatol 1995; 132(1):122–127.

    Article  PubMed  CAS  Google Scholar 

  13. Moriwaki S, Nishigori C, Imamura S et al. A case of Xeroderma pigmentosum complementation group F with neurological abnormalities. Br J Dermatol 1993;128(1):91–94.

    Article  PubMed  CAS  Google Scholar 

  14. Norris PG, Hawk JL, Avery JA et al. Xeroderma pigmentosum complementation group F in a nonjapanese patient. J Am Acad Dermatol 1988; 18(5 Pt 2):1185–1188.

    Article  PubMed  CAS  Google Scholar 

  15. Zghal M, Fazaa B, Zghal A et al. A whole family affected by Xeroderma pigmentosum: clinical and genetic particularities. Ann Dermatol Venereol 2003; 130(1 Pt 1):31–36.

    PubMed  CAS  Google Scholar 

  16. Friedberg EC, Walker GC, Siede W et al. DNA repair and mutagenesis. 2nd ed. Washington DC: ASM Press, 2005.

    Google Scholar 

  17. Murray D, Vallee-Lucic L, Rosenberg E et al. Sensitivity of nucleotide excision repair-deficient human cells to ionizing radiation and cyclophosphamide. Anticancer Res 2002; 22(1A):21–26.

    PubMed  CAS  Google Scholar 

  18. Hoy CA, Thompson LH, Mooney CL et al. Defective DNA cross-link removal in Chinese hamster cell mutants hypersensitive to bifunctional alkylating agents. Cancer Res 1985; 45(4):1737–1743.

    PubMed  CAS  Google Scholar 

  19. Collins AR. Mutant rodent cell lines sensitive to ultraviolet light, ionizing radiation and cross-linking agents: a comprehensive survey of genetic and biochemical characteristics. Mut Res 1993; 293(2):99–118.

    CAS  Google Scholar 

  20. Busch DB, van Vuuren H, de Wit J et al. Phenotypic heterogeneity in nucleotide excision repair mutants of rodent complementation groups 1 and 4. Mut Res 1997; 383(2):91–106.

    CAS  Google Scholar 

  21. Baumann B, Potash MJ, Kohler G. Consequences of frameshift mutations at the immunoglobulin heavy chain locus of the mouse. EMBO J 1985; 4(2):351–359.

    PubMed  CAS  Google Scholar 

  22. Leeds P, Peltz SW, Jacobson A et al. The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon. Genes Dev 1991; 5(12A):2303–2314.

    Article  PubMed  CAS  Google Scholar 

  23. Nilsson G, Belasco JG, Cohen SN et al. Effect of premature termination of translation on mRNA stability depends on the site of ribosome release. Proc Natl Acad Sci USA 1987; 84(14):4890–4904.

    Article  PubMed  CAS  Google Scholar 

  24. Tian M, Shinkura R, Shinkura N et al. Growth retardation, early death and DNA repair defects in mice deficient for the nucleotide excision repair enzyme XPF. Mol Cell Biol, 2004; 24(3):1200–1205.

    Article  PubMed  CAS  Google Scholar 

  25. Thompson LH, Brookman KW, Weber CA et al. Molecular cloning of the human nucleotide-excision-repair gene ERCC4. Proc Natl Acad Sci USA 1994; 91(15):6855–6859.

    Article  PubMed  CAS  Google Scholar 

  26. Brookman KW, Lamerdin JE, Thelen MP et al. ERCC4 (XPF) encodes a human nucleotide excision repair protein with eukaryotic recombination homologs. Mol Cell Biol 1996; 16(11):6553–6662.

    PubMed  CAS  Google Scholar 

  27. Komori K, Fujikane R, Shinagawa H et al. Novel endonuclease in Archaea cleaving DNA with various branched structure. Genes Genet Syst 2002; 77(4):227–241.

    Article  PubMed  CAS  Google Scholar 

  28. Enzlin JH, Scharer OD. The active site of the DNA repair endonuclease XPF-ERCC1 forms a highly conserved nuclease motif. EMBO J 2002; 21(8):2045–2053.

    Article  PubMed  CAS  Google Scholar 

  29. van Duin M, de Wit J, Odijk H et al. Molecular characterization of the human excision repair gene ERCC-1: cDNA cloning and amino acid homology with the yeast DNA repair gene RADIO. Cell 1986; 44(6):913–923.

    Article  PubMed  Google Scholar 

  30. Westerveld A, Hoeijmakers JH, van Duin M et al. Molecular cloning of a human DNA repair gene. Nature 1984; 310(5976):425–429.

    Article  PubMed  CAS  Google Scholar 

  31. Su AI, Cooke MP, Ching KA et al. Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci USA 2002; 99(7):4465–4470.

    Article  PubMed  CAS  Google Scholar 

  32. Mignone F, Gissi C, Liuni S et al. Untranslated regions of mRNAs. Genome Biol 2002; 3(3):RE-VIEWS0004.

    Google Scholar 

  33. Hughes MJ, Andrews DW. A single nucleotide is a sufficient 5′ untranslated region for translation in an eukaryotic in vitro system. FEBS Letts 1997; 414(1):19–22.

    Article  CAS  Google Scholar 

  34. McWhir J, Selfridge J, Harrison DJ et al. Mice with DNA repair gene (ERCC-1) deficiency have elevated levels of p53 liver nuclear abnormalities and die before weaning. Nat Genet 1993; 5(3):217–224.

    Article  PubMed  CAS  Google Scholar 

  35. Weeda G, Donker I, de Wit J et al. Disruption of mouse ERCC1 results in a novel repair syndrome with growth failure, nuclear abnormalities and senescence. Curr Biol 1997; 7(6):427–439.

    Article  PubMed  CAS  Google Scholar 

  36. Kirschner K, Singh R, Prost S et al. Characterisation of Ercc1 deficiency in the liver and (Amst) 2006;in conditional Ercc1-deficient primary hepatocytes in vitro. DNA Repair.

    Google Scholar 

  37. Schrader CE, Vardo J, Linehan E et al. Deletion of the nucleotide excision repair gene Ercc1 reduces immunoglobulin class switching and alters mutations near switch recombination junctions. J Exp Med 2004; 200(3):321–330.

    Article  PubMed  CAS  Google Scholar 

  38. Van Duin M, Hoeijmakers JH. Cloning of human repair genes by genomic DNA transfection. Ann Ist Super Sanita 1989; 25(1):131–142.

    PubMed  Google Scholar 

  39. Quievryn G, Zhitkovich A. Loss of DNA-protein crosslinks from formaldehyde-exposed cells occurs through spontaneous hydrolysis and an active repair process linked to proteosome function. Carcinogenesis 2000; 21(8):1573–1580.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang N, Zhang X, Peterson C et al. Differential processing of UV mimetic and interstrand crosslink damage by XPF cell extracts. Nucleic Acids Res 2000; 28(23):4800–4804.

    Article  PubMed  CAS  Google Scholar 

  41. Niedernhofer LJ, Essers J, Weeda G et al. The structure-specific endonuclease Ercc1-Xpf is required for targeted gene replacement in embryonic stem cells. EMBO J 2001; 20(22):6540–6549.

    Article  PubMed  CAS  Google Scholar 

  42. de Vries A, van Oostrom CT, Hofhuis FM et al. Increased susceptibility to ultraviolet-B and carcinogens of mice lacking the DNA excision repair gene XPA. Nature 1995; 377(6545):169–173.

    Article  PubMed  Google Scholar 

  43. Nakane H, Takeuchi S, Yuba S et al. High incidence of ultraviolet-B-or chemical-carcinogen-induced skin tumours in mice lacking the Xeroderma pigmentosum group A gene. Nature 1995; 377(6545):165–168.

    Article  PubMed  CAS  Google Scholar 

  44. Bailly V, Sommers CH, Sung P et al. Specific complex formation between proteins encoded by the yeast DNA repair and recombination genes RAD1 and RADIO. Proc Natl Acad Sci USA 1992; 89(17):8273–8277.

    Article  PubMed  CAS  Google Scholar 

  45. Bardwell AJ, Bardwell L, Tomkinson AE et al. Specific cleavage of model recombination and repair intermediates by the yeast Rad1-Rad10 DNA endonuclease. Science 1994; 265(5181):2082–2085.

    Article  PubMed  CAS  Google Scholar 

  46. Bardwell L, Cooper AJ, Friedberg EC. Stable and specific association between the yeast recombination and DNA repair proteins RAD1 and RADIO in vitro. Mol Cell Biol 1992; 12(7):3041–3049.

    PubMed  CAS  Google Scholar 

  47. Schiestl RH, Prakash S. RAD10, an excision repair gene of Saccharomyces cerevisiae, is involved in the RAD1 pathway of mitotic recombination. Mol Cell Biol 1990; 10(6):2485–2491.

    PubMed  CAS  Google Scholar 

  48. Park CH, Bessho T, Matsunaga T et al. Purification and characterization of the XPF-ERCC1 complex of human DNA repair excision nuclease. J Biol Chem 1995; 270(39):22657–22660.

    Article  PubMed  CAS  Google Scholar 

  49. van Vuuren AJ, Appeldoorn E, Odijk H et al. Evidence for a repair enzyme complex involving ERCC1 and complementing activities of ERCC4, ERCC11 and Xeroderma pigmentosum group F. EMBO J 1993; 12(9):3693–3701.

    PubMed  Google Scholar 

  50. Biggerstaff M, Szymkowski DE, Wood RD. cocorrection of the ERCC1, ERCC4 and xeroderma pigmentosum group F DNA repair defects in vitro. EMBO J 1993; 12(9):3685–3692.

    PubMed  CAS  Google Scholar 

  51. Reardon JT, Thompson LH, Sancar A. Excision repair in man and the molecular basis of Xeroderma pigmentosum syndrome. Cold Spring Harb Symp Quant Biol 1993; 58:605–617.

    PubMed  CAS  Google Scholar 

  52. Busch D, Greiner C, Lewis K et al. Summary of complementation groups of UV-sensitive CHO cell mutants isolated by large-scale screening. Mutagenesis 1989; 4(5):349–354.

    Article  PubMed  CAS  Google Scholar 

  53. Gaillard PH, Wood RD. Activity of individual ERCC1 and XPF subunits in DNA nucleotide excision repair. Nucleic Acids Res 2001; 29(4):872–829.

    Article  PubMed  CAS  Google Scholar 

  54. Houtsmuller AB, Rademakers S, Nigg AL et al. Action of DNA repair endonuclease ERCC1/XPF in living cells. Science 1999; 284(5416):958–961.

    Article  PubMed  CAS  Google Scholar 

  55. Yagi T, Matsumura Y, Sato M et al. Complete restoration of normal DNA repair characteristics in group F Xeroderma pigmentosum cells by over-expression of transfected XPF cDNA. Carcinogenesis 1998; 19(1):55–60.

    Article  PubMed  CAS  Google Scholar 

  56. Yagi T, Wood RD, Takebe H. A low content of ERCC1 and a 120 kDa protein is a frequent feature of group F Xeroderma pigmentosum fibroblast cells. Mutagenesis 1997; 12(1):41–44.

    Article  PubMed  CAS  Google Scholar 

  57. Bessho T, Sancar A, Thompson LH et al. Reconstitution of human excision nuclease with recombinant XPF-ERCC1 complex. J Biol Chem 1997; 272(6):3833–3837.

    Article  PubMed  CAS  Google Scholar 

  58. Damia G, Guidi G, D’Incalci M. Expression of genes involved in nucleotide excision repair and sensitivity to cisplatin and melphalan in human cancer cell lines. Eur J Cancer 1998; 34(11):1783–1788.

    Article  PubMed  CAS  Google Scholar 

  59. Park CH, Sancar A. Formation of a ternary complex by human XPA, ERCC1 and ERCC4(XPF) excision repair proteins. Proc Natl Acad Sci USA 1994; 91(11):5017–21.

    Article  PubMed  CAS  Google Scholar 

  60. Moggs JG, Yarema KJ, Essigmann JM et al. Analysis of incision sites produced by human cell extracts and purified proteins during nucleotide excision repair of a 1,3-intrastrand d(GpTpG)-cisplatin adduct. J Biol Chem 1996; 271(12):7177–7186.

    Article  PubMed  CAS  Google Scholar 

  61. Aboussekhra A, Biggerstaff M, Shivji MK et al. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 1995; 80(6):859–868.

    Article  PubMed  CAS  Google Scholar 

  62. de Laat WL, Appeldoorn E, Jaspers NG et al. DNA structural elements required for ERCC1-XPF endonuclease activity. J Biol Chem 1998; 273(14):7835–7842.

    Article  PubMed  Google Scholar 

  63. Evans E, Moggs JG, Hwang JR et al. Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO J 1997; 16(21):6559–6573.

    Article  PubMed  CAS  Google Scholar 

  64. Matsunaga T, Park CH, Bessho T et al. Replication protein A confers structure-specific endonuclease activities to the XPF-ERCC1 and XPG subunits of human DNA repair excision nuclease. J Biol Chem 1996; 271(19):11047–11050.

    Article  PubMed  CAS  Google Scholar 

  65. O’Donovan A, Davies AA, Moggs JG et al. XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature 1994; 371(6496):432–435.

    Article  PubMed  CAS  Google Scholar 

  66. Li L, Elledge SJ, Peterson CA et al. Specific association between the human DNA repair proteins XPA and ERCC1. Proc Natl Acad Sci USA 1994; 91(11):5012–5016.

    Article  PubMed  CAS  Google Scholar 

  67. Li L, Peterson CA, Lu X et al. Mutations in XPA that prevent association with ERCC1 are defective in nucleotide excision repair. Mol Cell Biol 1995; 15(4):1993–1998.

    PubMed  CAS  Google Scholar 

  68. Nagai A, Saijo M, Kuraoka I et al. Enhancement of damage-specific DNA binding of XPA by interaction with the ERCC1 DNA repair protein. Biochem Biophys Res Commun 1995; 211(3):960–966.

    Article  PubMed  CAS  Google Scholar 

  69. Saijo M, Kuraoka I, Masutani C et al. Sequential binding of DNA repair proteins RPA and ERCC1 to XPA in vitro. Nucleic Acids Res 1996; 24(23):4719–4724.

    Article  PubMed  CAS  Google Scholar 

  70. Mu D, Hsu DS, Sancar A. Reaction mechanism of human DNA repair excision nuclease. J Biol Chem 1996; 271(14):8285–8294.

    Article  PubMed  CAS  Google Scholar 

  71. Wakasugi M, Reardon JT, Sancar A. The noncatalytic function of XPG protein during dual incision in human nucleotide excision repair. J Biol Chem 1997; 272(25):16030–16034.

    Article  PubMed  CAS  Google Scholar 

  72. Huang JC, Svoboda DL, Reardon JT et al. Human nucleotide excision nuclease removes thymine dimers from DNA by incising the 22nd phosphodiester bond 5′ and the 6th phosphodiester bond 3′ to the photodimer. Proc Natl Acad Sci USA 1992; 89(8):3664–3668.

    Article  PubMed  CAS  Google Scholar 

  73. Henricksen LA, Umbricht CB, Wold MS. Recombinant replication protein A: expression, complex formation and functional characterization. J Biol Chem 1994; 269(15):11121–11132.

    PubMed  CAS  Google Scholar 

  74. Bochkarev A, Bochkareva E. From RPA to BRCA2: lessons from single-stranded DNA binding by the OB-fold. Curr Opin Struct Biol 2004; 14(1):36–42.

    Article  PubMed  CAS  Google Scholar 

  75. Coverley D, Kenny MK, Lane DP et al. A role for the human single-stranded DNA binding protein HSSB/RPA in an early stage of nucleotide excision repair. Nucleic Acids Res 1992; 20(15):3873–3880.

    Article  PubMed  CAS  Google Scholar 

  76. Guzder SN, Habraken Y, Sung P et al. Reconstitution of yeast nucleotide excision repair with purified Rad proteins, replication protein A and transcription factor TFIIH. J Biol Chem 1995; 270(22):12973–12976.

    Article  PubMed  CAS  Google Scholar 

  77. Mu D, Park CH, Matsunaga T et al. Reconstitution of human DNA repair excision nuclease in a highly defined system. J Biol Chem 1995; 270(6):2415–2418.

    Article  PubMed  CAS  Google Scholar 

  78. de Laat WL, Sijbers AM, Odijk H et al. Mapping of interaction domains between human repair proteins ERCC1 and XPF. Nucleic Acids Res 1998; 26(18):4146–4152.

    Article  PubMed  Google Scholar 

  79. Nishino T, Komori K, Ishino Y et al. X-ray and biochemical anatomy of an archaeal XPF/Rad1/Mus81 family nuclease: similarity between its endonuclease domain and restriction enzymes. Structure 2003; 11(4):445–4457.

    Article  PubMed  CAS  Google Scholar 

  80. Chiu R, Boyle WJ, Meek J et al. The c-Fos protein interacts with c-Jun/AP-1 to stimulate transcription of AP-1 responsive genes. Cell 1988; 54(4):541–552.

    Article  PubMed  CAS  Google Scholar 

  81. Rauscher FJ 3rd, Sambucetti LC, Curran T et al Common DNA binding site for Fos protein complexes and transcription factor AP-1. Cell 1988; 52(3):471–480.

    Article  PubMed  CAS  Google Scholar 

  82. Buscher M, Rahmsdorf HJ, Litfin M et al. Activation of the c-fos gene by UV and phorbol ester: different signal transduction pathways converge to the same enhancer element. Oncogene 1988; 3(3):301–311.

    PubMed  CAS  Google Scholar 

  83. Dosch J, Kaina B. Induction of c-fos, c-jun, junB and junD mRNA and AP-1 by alkylating mutagens in cells deficient and proficient for the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) and its relationship to cell death, mutation induction and chromosomal instability. Oncogene 1996; 13(9):1927–1935.

    PubMed  CAS  Google Scholar 

  84. Gubits RM, Fairhurst JL. c-fos mRNA levels are increased by the cellular stressors, heat shock and sodium arsenite. Oncogene 1988; 3(2):163–168.

    PubMed  CAS  Google Scholar 

  85. Hollander MC, Fornace AJ Jr. Induction of fos RNA by DNA-damaging agents. Cancer Res 1989; 49(7):1687–1692.

    PubMed  CAS  Google Scholar 

  86. Muller R, Bravo R, Burckhardt J et al. Induction of c-fos gene and protein by growth factors precedes activation of c-myc. Nature 1984; 312(5996):716–720.

    Article  PubMed  CAS  Google Scholar 

  87. Haas S, Kaina B. c-Fos is involved in the cellular defence against the genotoxic effect of UV radiation. Carcinogenesis 1995; 16(5):985–991.

    Article  PubMed  CAS  Google Scholar 

  88. Christmann M, Tomicic MT, Origer J et al. c-Fos is required for excision repair of UV-light induced DNA lesions by triggering the resynthesis of XPF. Nuc Acids Res, 2006.

    Google Scholar 

  89. Mu D, Wakasugi M, Hsu DS et al. Characterization of reaction intermediates of human excision repair nuclease. J Biol Chem 1997; 272(46):28971–28979.

    Article  PubMed  CAS  Google Scholar 

  90. McCutchen-Maloney SL, Giannecchini CA, Hwang MH et al. Domain mapping of the DNA binding, endonuclease and ERCC1 binding properties of the human DNA repair protein XPF. Biochemistry 1999; 38(29):9417–9425.

    Article  PubMed  CAS  Google Scholar 

  91. Kuraoka I, Kobertz WR, Ariza RR et al. Repair of an interstrand DNA cross-link initiated by ER-CC1-XPF repair/recombination nuclease. J Biol Chem 2000; 275(34):26632–26636.

    Article  PubMed  CAS  Google Scholar 

  92. Roberts JA, Bell SD, White MF. An archaeal XPF repair endonuclease dependent on a heterotrimeric PCNA. Mol Microbiol 2003; 48(2):361–371.

    Article  PubMed  CAS  Google Scholar 

  93. Newman M, Murray-Rust J, Lally J et al. Structure of an XPF endonuclease with and without DNA suggests a model for substrate recognition. EMBO J 2005; 24(5):895–905.

    Article  PubMed  CAS  Google Scholar 

  94. Nishin T, Komori K, Ishino Y et al. Structural and functional analyses of an archaeal XPF/Rad1/Mus81 nuclease: asymmetric DNA binding and cleavage mechanisms. Structure (Camb) 2005; 1(8):1183–1192.

    Article  CAS  Google Scholar 

  95. Tsodikov OV, Enzlin JH, Scharer OD et al. Crystal structure and DNA binding functions of ERCC1, a subunit of the DNA structure-specific endonuclease XPF-ERCC1. Proc Natl Acad Sci USA 2005; 102(32):11236–11241.

    Article  PubMed  CAS  Google Scholar 

  96. Riedl T, Hanaoka F, Egly JM. The comings and goings of nucleotide excision repair factors on damaged DNA. EMBO J 2003; 22(19):5293–5303.

    Article  PubMed  CAS  Google Scholar 

  97. Harless J. Hewitt RR. Intranuclear localization of UV-induced DNA repair in human VA13 cells. Mutat Res 1987; 183(2):177–184.

    PubMed  CAS  Google Scholar 

  98. Jackson DA, Balajee AS, Mullenders L et al. Sites in human nuclei where DNA damaged by ultraviolet light is repaired: visualization and localization relative to the nucleoskeleton. J Cell Sci 1994; 107(7):1745–1752.

    PubMed  CAS  Google Scholar 

  99. McCready SJ, Cook PR. Lesions induced in DNA by ultraviolet light are repaired at the nuclear cage. J Cell Sci 1984; 70:189–196.

    PubMed  CAS  Google Scholar 

  100. Mullenders LH, van Kesteren van Leeuwen AC, van Zeeland AA et al. Nuclear matrix associated DNA is preferentially repaired in normal human fibroblasts, exposed to a low dose of ultraviolet light but not in Cockayne’s syndrome fibroblasts. Nucleic Acids Res 1988; 16(22):10607–10622.

    Article  PubMed  CAS  Google Scholar 

  101. Park MS, Knauf JA, Pendergrass SH et al. Ultraviolet-induced movement of the human DNA repair protein, Xeroderma pigmentosum type G, in the nucleus. Proc Natl Acad Sci USA, 1996; 93(16):8368–8373.

    Article  PubMed  CAS  Google Scholar 

  102. Lan L, Hayashi T, Rabeya RM et al. Functional and physical interactions between ERCC1 and MSH2 complexes for resistance to cis-diamminedichloroplatinum(II) in mammalian cells. DNA Repair (Amst) 2004; 3(2):135–143.

    Article  CAS  Google Scholar 

  103. Tian M, Alt FW. Transcription-induced cleavage of immunoglobulin switch regions by nucleotide excision repair nucleases in vitro. J Biol Chem 2000; 275(31):24163–24172.

    Article  PubMed  CAS  Google Scholar 

  104. Muramatsu M, Kinoshita K, Fagarasan S et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 2000; 102(5):553–563.

    Article  PubMed  CAS  Google Scholar 

  105. Revy P, Muto T, Levy Y et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 2000; 12(5):565–575.

    Article  Google Scholar 

  106. Bransteitter R, Pham P, ScharfF MD et al. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci USA 2003; 100(7):4102–4107.

    Article  PubMed  CAS  Google Scholar 

  107. Chaudhuri J, Tian M, Khuong C et al. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 2003; 422(6933):726–730.

    Article  PubMed  CAS  Google Scholar 

  108. Di Noia J, Neuberger MS. Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature 2002; 419(6902):43–48.

    Article  PubMed  CAS  Google Scholar 

  109. Petersen-Mahrt SK, Harris RS, Neuberger MS. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 2002; 418(6893):99–103.

    Article  PubMed  CAS  Google Scholar 

  110. Storb U, Stavnezer J. Immunoglobulin genes: generating diversity with AID and UNG. Curr Biol 2002; 12(21):R725–727.

    Article  PubMed  CAS  Google Scholar 

  111. Lawley PD, Phillips DH. DNA adducts from chemotherapeutic agents. Mutat Res 1996; 355(1–2):13–40.

    PubMed  Google Scholar 

  112. Murnane JP, Byfield JE. Irreparable DNA cross-links and mammalian cell lethality with bifunctional alkylating agents. Chem Biol Interact 1981; 38(1):75–86.

    Article  PubMed  CAS  Google Scholar 

  113. Wijen JP, Nivard MJ, Vogel EW. The in vivo genetic activity profile of the monofunctional nitrogen mustard 2-chloroethylamine differs drastically from its bifunctional counterpart mechlorethamine. Carcinogenesis 2000; 21(10):1859–1867.

    Article  PubMed  CAS  Google Scholar 

  114. Yaghi BM, Turner PM, Denny WA et al. Comparative mutational spectra of the nitrogen mustard chlorambucil and its half-mustard analogue in Chinese hamster AS52 cells. Mutat Res 1998; 401(1–2):153–164.

    PubMed  CAS  Google Scholar 

  115. Vogel EW, Nivard MJ, Ballering LA et al. DNA damage and repair in mutagenesis and carcinogenesis: implications of structure-activity relationships for cross-species extrapolation. Mutat Res 1996; 353(1–2):177–218.

    PubMed  Google Scholar 

  116. Bodell WJ, Aida T, Berger MS et al. Repair of O6-(2-chloroethyl)guanine mediates the biological effects of chloroethylnitrosoureas. Environ Health Perspect 1985; 62:119–126.

    Article  PubMed  CAS  Google Scholar 

  117. Bodell WJ, Aida T, Rasmussen J. Comparison of sister-chromatid exchange induction caused by nitrosoureas that alkylate or alkylate and crosslink DNA. Mutat Res 1985; 149(1):95–100.

    PubMed  CAS  Google Scholar 

  118. Tokuda K, Bodell WJ. Cytotoxicity and sister chromatid exchanges in 9L cells treated with monofunctional and bifunctional nitrogen mustards. Carcinogenesis 1987; 8(11):1697–1701.

    Article  PubMed  CAS  Google Scholar 

  119. Vogel EW, Nivard MJ. Performance of 181 chemicals in a Drosophila assay predominantly monitoring interchromosomal mitotic recombination. Mutagenesis 1993; 8(1):57–81.

    Article  PubMed  CAS  Google Scholar 

  120. McHugh PJ, Sarkar S. DNA interstrand cross-link repair in the cell cycle: a critical role for polymerase zeta in G1 phase. Cell Cycle 2006; 5(10):1044–1047.

    PubMed  CAS  Google Scholar 

  121. Sarkar S, Davies AA, Ulrich HD et al. DNA interstrand crosslink repair during G1 involves nucleotide excision repair and DNA polymerase zeta. EMBO J 2006; 25(6):1285–1294.

    Article  PubMed  CAS  Google Scholar 

  122. Cheng S, Van Houten B, Gamper HB et al. Use of psoralen-modified oligonucleotides to trap three-stranded RecA-DNA complexes and repair of these cross-linked complexes by ABC excinuclease. J Biol Chem 1988; 263(29):15110–15117.

    PubMed  CAS  Google Scholar 

  123. Saffran WA, Ahmed S, Bellevue S et al. DNA repair defects channel interstrand DNA cross-links into alternate recombinational and error-prone repair pathways. J Biol Chem 2004; 279(35):36462–36469.

    Article  PubMed  CAS  Google Scholar 

  124. Islas AL, Baker FJ, Hanawalt PC. Transcription-coupled repair of psoralen cross-links but not monoadducts in Chinese hamster ovary cells. Biochemistry 1994; 3(35):10794–10799.

    Article  Google Scholar 

  125. Islas AL, Vos JM, Hanawalt PC. Differential introduction and repair of psoralen photoadducts to DNA in specific human genes. Cancer Res 1991; 51(11):2867–2873.

    PubMed  CAS  Google Scholar 

  126. Zhang N, Lu X, Zhang X et al. hMutSbeta is required for the recognition and uncoupling of psoralen interstrand cross-links in vitro. Mol Cell Biol 2002; 22(7):2388–2397.

    Article  PubMed  CAS  Google Scholar 

  127. Meniel V, Magana-Schwencke N, Averbeck D. Preferential repair in Saccharomyces cerevisiae rad mutants after induction of interstrand cross-links by 8-methoxypsoralen plus UVA. Mutagenesis 1995; 10(6):543–548.

    Article  PubMed  CAS  Google Scholar 

  128. Miller RD, Prakash L, Prakash S. Genetic control of excision of Saccharomyces cerevisiae interstrand DNA cross-links induced by psoralen plus near-UV light. Mol Cell Biol 1982; 2(8):939–948.

    PubMed  CAS  Google Scholar 

  129. Klein HL. Different types of recombination events are controlled by the RAD1 and RAD52 genes of Saccharomyces cerevisiae. Genetics 1988; 120(2):367–377.

    PubMed  CAS  Google Scholar 

  130. Klein HL. Genetic control of intrachromosomal recombination. BioEssays 1995; 17(2):147–159.

    Article  PubMed  CAS  Google Scholar 

  131. Prado F, Aguilera A. Role of reciprocal exchange, one-ended invasion crossover and single-strand annealing on inverted and direct repeat recombination in yeast: different requirements for the RAD1, RADIO and RAD52 genes. Genetics 1995; 139(1):109–123.

    PubMed  CAS  Google Scholar 

  132. Schiestl RH, Prakash S. RAD1, an excision repair gene of Saccharomyces cerevisiae, is also involved in recombination. Mol Cell Biol 1988; 8(9):3619–3626.

    PubMed  CAS  Google Scholar 

  133. Saffran WA, Greenberg RB, Thaler-Scheer MS et al. Single strand and double strand DNA damage-induced reciprocal recombination in yeast. Dependence on nucleotide excision repair and RAD1 recombination. Nucleic Acids Res 1994; 22(14):2823–2829.

    Article  PubMed  CAS  Google Scholar 

  134. Colaiacovo MP, Paques F, Haber JE. Removal of one nonhomologous DNA end during gene conversion by a RAD1-and MSH2-independent pathway. Genetics 1999; 151(4):1409–1423.

    PubMed  CAS  Google Scholar 

  135. Fishman-Lobell J, Rudin N, Haber JE. Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. Mol Cell Biol 1992; 12(3):1292–1303.

    PubMed  CAS  Google Scholar 

  136. Ivanov EL, Haber JE. RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae. Mol Cell Biol 1995; 15(4):2245–2251.

    PubMed  CAS  Google Scholar 

  137. Paques F, Haber JE. Two pathways for removal of nonhomologous DNA ends during double-strand break repair in Saccharomyces cerevisiae. Mol Cell Biol 1997; 17(11):6765–6771.

    PubMed  CAS  Google Scholar 

  138. Sugawara N, Paques F, Colaiacovo M et al. Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination. Proc Natl Acad Sci USA 1997; 94(17):9214–9219.

    Article  PubMed  CAS  Google Scholar 

  139. De Silva IU, McHugh PJ, Clingen PH et al. Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol Cell Biol 2000; 20(21):7980–7990.

    Article  PubMed  Google Scholar 

  140. Niedernhofer LJ, Odijk H, Budzowska M et al. The structure-specific endonuclease Ercc1-Xpf is required to resolve DNA interstrand cross-link-induced double-strand breaks. Mol Cell Biol 2004; 24(13):5776–5787.

    Article  PubMed  CAS  Google Scholar 

  141. Rothfuss A, Grompe M. Repair kinetics of genomic interstrand DNA cross-links: evidence for DNA double-strand break-dependent activation of the Fanconi anemia/BRCA pathway Mol Cell Biol 2004; 24(1):123–134.

    Article  PubMed  CAS  Google Scholar 

  142. Redon C, Pilch D, Rogakou E et al. Histone H2A variants H2AX and H2AZ. Curr Opin Genet Dev 2002; 12(2):162–169.

    Article  PubMed  CAS  Google Scholar 

  143. Thiriet C, Hayes JJ. Chromatin in need of a fix: phosphorylation of H2AX connects chromatin to DNA repair. Mol Cell 2005; 18(6):617–622.

    Article  PubMed  CAS  Google Scholar 

  144. Royer-Pokora B, Peterson WD Jr, Haseltine WA. Biological and biochemical characterization of an SV40-transformed Xeroderma pigmentosum cell line. Exp Cell Res, 1984; 151(2):408–420.

    Article  PubMed  CAS  Google Scholar 

  145. Yagi T, Takebe H. Establishment by SV40 transformation and characteristics of a cell line of Xeroderma pigmentosum belonging to complementation group F. Mutat Res 1983; 112(1):59–66.

    PubMed  CAS  Google Scholar 

  146. Mogi S, Oh DH. Gamma-H2AX formation in response to interstrand crosslinks requires XPF in human cells. DNA Repair (Amst) 2006; 5(6):731–740.

    Article  CAS  Google Scholar 

  147. Krejci L, Chen L, Van Komen S et al. Mending the break: two DNA double-strand break repair machines in eukaryotes. Prog Nucleic Acid Res Mol Biol 2003; 74:159–201.

    Article  PubMed  CAS  Google Scholar 

  148. Symington LS. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 2002; 66(4):630–670, table of contents.

    Article  PubMed  CAS  Google Scholar 

  149. Jachymczyk WJ, von Borstel RC, Mowat MR et al. Repair of interstrand cross-links in DNA of Saccharomyces cerevisiae requires two systems for DNA repair: the RAD3 system and the RAD51 system. Mol Gen Genet 1981; 182(2):196–205.

    Article  PubMed  CAS  Google Scholar 

  150. McHugh PJ, Sones WR, Hartley JA. Repair of intermediate structures produced at DNA interstrand cross-links in Saccharomyces cerevisiae. Mol Cell Biol 2000; 20(10):3425–3433.

    Article  PubMed  CAS  Google Scholar 

  151. Liu N, Lamerdin JE, Tebbs RS et al. XRCC2 and XRCC3, new human Rad51-family members, promote chromosome stability and protect against DNA cross-links and other damages. Mol Cell 1998; 1(6):783–793.

    Article  PubMed  CAS  Google Scholar 

  152. Rijkers T, Van Den Ouweland J, Morolli B et al. Targeted inactivation of mouse RAD52 reduces homologous recombination but not resistance to ionizing radiation. Mol Cell Biol 1998; 18(11):6423–6429.

    PubMed  CAS  Google Scholar 

  153. Yamaguchi-Iwai Y, Sonoda E, Buerstedde JM et al. Homologous recombination, but not DNA repair, is reduced in vertebrate cells deficient in RAD52. Mol Cell Biol 1998; 18(11):6430–6435.

    PubMed  CAS  Google Scholar 

  154. Motycka TA, Bessho T, Post SM et al. Physical and functional interaction between the XPF/ERCC1 endonuclease and hRad52. J Biol Chem 2004; 279(14):13634–13639.

    Article  PubMed  CAS  Google Scholar 

  155. Nairn RS, Adair GM, Christmann CB et al. Ultraviolet stimulation of intermolecular homologous recombination in Chinese hamster ovary cells. Mol Carcinog 1991; 4(6):519–526.

    Article  PubMed  CAS  Google Scholar 

  156. Melton DW, Ketchen AM, Nunez F et al. Cells from ERCC1-deficient mice show increased genome instability and a reduced frequency of S-phase-dependent illegitimate chromosome exchange but a normal frequency of homologous recombination. J Cell Sci 1998; 111(3):395–404.

    PubMed  CAS  Google Scholar 

  157. Sargent RG, Rolig RL, Kilburn AE et al. Recombination-dependent deletion formation in mammalian cells deficient in the nucleotide excision repair gene ERCC1. Proc Natl Acad Sci USA 1997; 94(24):13122–13127.

    Article  PubMed  CAS  Google Scholar 

  158. Sargent RG, Meservy JL, Perkins BD et al. Role of the nucleotide excision repair gene ERCC1 in formation of recombination-dependent rearrangements in mammalian cells. Nucleic Acids Res 2000; 28(19):3771–3778.

    Article  PubMed  CAS  Google Scholar 

  159. Adair GM, Rolig RL, Moore-Faver D et al. Role of ERCC1 in removal of long nonhomologous tails during targeted homologous recombination. EMBO J 2000; 19(20):5552–5561.

    Article  PubMed  CAS  Google Scholar 

  160. Damia G, Imperatori L, Stefanini M et al. Sensitivity of CHO mutant cell lines with specific defects in nucleotide excision repair to different anticancer agents. Int J Cancer 1996; 66(6):779–783.

    Article  PubMed  CAS  Google Scholar 

  161. Kaye J, Smith CA, Hanawalt PC. DNA repair in human cells containing photoadducts of 8-methoxy-psoralen or angelicin. Cancer Res 1980; 40(3):696–702.

    PubMed  CAS  Google Scholar 

  162. Vuksanovic L, Cleaver JE. Unique cross-link and monoadduct repair characteristics of a Xeroderma pigmentosum revertant cell line. Mutat Res 1987; 184(3):255–263.

    PubMed  CAS  Google Scholar 

  163. McHugh PJ, Spanswick VJ, Hartley JA. Repair of DNA interstrand crosslinks: molecular mechanisms and clinical relevance. Lancet Oncol 2001; 2(8):483–490.

    Article  PubMed  CAS  Google Scholar 

  164. Akkari YM, Bateman RL, Reifsteck CA et al. DNA replication is required To elicit cellular responses to psoralen-induced DNA interstrand cross-links. Mol Cell Biol 2000; 20(21):8283–8289.

    Article  PubMed  CAS  Google Scholar 

  165. Barker S, Weinfeld M, Murray D. DNA-protein crosslinks: their induction, repair and biological consequences. Mutat Res 2005; 589(2):111–135.

    Article  PubMed  CAS  Google Scholar 

  166. Murray D, Rosenberg E. The importance of the ERCC1/ERCC4[XPF] complex for hypoxic-cell radioresistance does not appear to derive from its participation in the nucleotide excision repair pathway. Mutat Res 1996; 364(3):217–226.

    PubMed  CAS  Google Scholar 

  167. Henderson ER, Blackburn EH. An overhanging 3′ terminus is a conserved feature of telomeres. Mol Cell Biol 1989; 9(1):345–348.

    PubMed  CAS  Google Scholar 

  168. Griffith JD, Comeau L, Rosenfield S et al. Mammalian telomeres end in a large duplex loop. Cell 1999; 97(4):503–514.

    Article  PubMed  CAS  Google Scholar 

  169. De Lange T. Telomere-related genome instability in cancer. Cold Spring Harb Symp Quant Biol 2005; 70:197–204.

    Article  PubMed  Google Scholar 

  170. de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 2005; 19(18):2100–2110.

    Article  PubMed  CAS  Google Scholar 

  171. Munoz P, Blanco R, Blasco MA. Role of the TRF2 telomeric protein in cancer and ageing. Cell Cycle 2006; 5(7):718–721.

    PubMed  CAS  Google Scholar 

  172. Greider CW, Blackburn EH. The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 1987; 51(6):887–898.

    Article  PubMed  CAS  Google Scholar 

  173. Chin L, Artandi SE, Shen Q et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 1999; 97(4):527–538.

    Article  PubMed  CAS  Google Scholar 

  174. Karlseder J, Broccoli D, Dai Y et al. p53-and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 1999; 283(5406):1321–1325.

    Article  PubMed  CAS  Google Scholar 

  175. van Steensel B, Smogorzewska A, de Lange T. TRF2 protects human telomeres from end-to-end fusions. Cell 1998; 92(3):401–413.

    Article  PubMed  Google Scholar 

  176. Smogorzewska A, Karlseder J, Holtgreve-Grez H et al. DNA ligase IV-dependent NHEJ of deprotected mammalian telomeres in G1 and G2. Curr Biol 2002; 12(19):1635–1644.

    Article  PubMed  CAS  Google Scholar 

  177. Zhu XD, Niedernhofer L, Kuster B et al. ERCC1/XPF removes the 3′ overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. Mol Cell 2003; 12(6):1489–1498.

    Article  PubMed  CAS  Google Scholar 

  178. Karlseder J, Smogorzewska A, de Lange T. Senescence induced by altered telomere state, not telomere loss. Science 2002; 295(5564):2446–2449.

    Article  PubMed  CAS  Google Scholar 

  179. Smogorzewska A, van Steensel B, Bianchi A et al. Control of human telomere length by TRF1 and TRF2. Mol Cell Biol 2000; 20(5):1659–1668.

    Article  PubMed  CAS  Google Scholar 

  180. Munoz P, Blanco R, Flores JM et al. XPF nuclease-dependent telomere loss and increased DNA damage in mice overexpressing TRF2 result in premature aging and cancer. Nat Genet 2005; 37(10):1063–1071.

    Article  PubMed  CAS  Google Scholar 

  181. Celli GB, de Lange T. DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat Cell Biol 2005; 7(7):712–718.

    Article  PubMed  CAS  Google Scholar 

  182. Wu Y, Zacal NJ, Rainbow AJ et al. XPF with mutations in its conserved nuclease domain is defective in DNA repair but functions in TRF2-mediated telomere shortening DNA Repair (Amst), 2007. doi:10.1016/j.dnarep.2006.09. 005.

    Google Scholar 

  183. Le Deist F, Poinsignon C, Moshous D et al. Artemis sheds new light on V(D)J recombination. Immunol Rev 2004; 200:142–155.

    Article  PubMed  Google Scholar 

  184. Bonatto D, Revers LF, Brendel M et al. The eukaryotic Pso2/Snm1 /Artemis proteins and their function as genomic and cellular caretakers. Braz J Med Biol Res 2005; 8(3):321–334.

    Google Scholar 

  185. Callebaut I, Moshous D, Mornon JP et al. Metallo-beta-lactamase fold within nucleic acids processing enzymes: the beta-CASP family. Nucleic Acids Res 2002; 30(16):3592–3601.

    Article  PubMed  CAS  Google Scholar 

  186. Bradshaw PS, Stavropoulos DJ, Meyn MS. Human telomeric protein TRF2 associates with genomic double-strand breaks as an early response to DNA damage. Nat Genet 2005; 37(2):193–197.

    Article  PubMed  CAS  Google Scholar 

  187. Opresko PL, von Kobbe C, Laine JP et al. Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases. J Biol Chem 2002; 277(43):41110–9.

    Article  PubMed  CAS  Google Scholar 

  188. Stavropoulos DJ, Bradshaw PS, Li X et al. The Bloom syndrome helicase BLM interacts with TRF2 in ALT cells and promotes telomeric DNA synthesis. Hum Mol Genet 2002; 11(25):3135–3144.

    Article  PubMed  CAS  Google Scholar 

  189. Nishigori C, Fujisawa H, Uyeno K et al. Xeroderma pigmentosum patients belonging to complementation group F and efficient liquid-holding recovery of ultraviolet damage. Photodermatol Photoimmunol Photomed 1991; 8(4):146–150.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

McDaniel, L.D., Schultz, R.A. (2008). XPF/ERCC4 and ERCC1: Their Products and Biological Roles. In: Ahmad, S.I., Hanaoka, F. (eds) Molecular Mechanisms of Xeroderma Pigmentosum. Advances in Experimental Medicine and Biology, vol 637. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09599-8_8

Download citation

Publish with us

Policies and ethics