Skip to main content

XPA Gene, Its Product and Biological Roles

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 637))

Abstract

The 31kDa XPA protein is part of the core incision complex of the mammalian nucleotide excision repair (NER) system and interacts with DNA as well as with many other NER subunits. In the absence of XPA, no incision complex can form and no excision of damaged DNA damage occurs. A comparative analysis of the DNA-binding properties in the presence of different substrate conformations indicated that XPA protein interacts preferentially with kinked DNA backbones. The DNA-binding domain of XPA protein displays a positively charged cleft that is involved in an indirect readout mechanism, presumably by detecting the increased negative potential encountered at sharp DNA bends. We propose that this indirect recognition function contributes to damage verification by probing the susceptibility of the DNA substrate to be kinked during the assembly of NER complexes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aboussekhra A, Biggerstaff M, Shivji MK et al. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 1995; 80:859–868.

    Article  PubMed  CAS  Google Scholar 

  2. Araki M, Masutani C, Takemura M et al. Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global nucleotide excision repair. J Biol Chem 2001; 276:18665–18672.

    Article  PubMed  CAS  Google Scholar 

  3. Araujo SJ, Tirode F, Coin F et al. Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of TFIIH and modulation by CAK. Genes Dev 2000; 14:349–359.

    PubMed  CAS  Google Scholar 

  4. Asashina H, Kuraoka I, Shirakawa M et al. The XPA protein is a zinc metalloprotein with an ability to recognize various kinds of DNA damage. Mutat Res 1994; 315:229–237.

    Google Scholar 

  5. Batty D, Rapic’-Otrin V, Levine AS et al. Stable binding of human XPC complex to irradiated DNA confers strong discrimination for damaged sites. J Mol Biol 2000; 300:275–290.

    Article  PubMed  CAS  Google Scholar 

  6. Bessho T, Sancar A, Thompson LH et al. Reconstitution of human excision nuclease with recombinant XPF-ERCC1 complex. J Biol Chem 1997; 272:3833–3837.

    Article  PubMed  CAS  Google Scholar 

  7. Bochkarev A, Pfuetzner RA, Edwards AM et al. Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature 1997; 385:176–181.

    Article  PubMed  CAS  Google Scholar 

  8. Bomgarden RD, Lupardus PJ, Soni DV et al. Opposing effects of the UV lesion repair protein XPA and UV bypass polymerase η on ATR checkpoint signaling. EMBO J 2006; 25:2605–2614.

    Article  PubMed  CAS  Google Scholar 

  9. Buchko GW, Daughdrill GW, de Lorimier R et al. Interactions of human nucleotide excision repair protein XPA with DNA and RPA70 Delta C327: chemical shift mapping and 15N NMR relaxation studies. Biochemistry 1999; 38:15116–15128.

    Article  PubMed  CAS  Google Scholar 

  10. Buchko GW, Ni S, Thrall BD et al. Human nucleotide excision repair protein XPA: expression and NMR backbone assignements of the 14.7 kDa minimal damaged DNA binding domain (Met98-Phe219). J Biomol NMR 1997; 10:313–314.

    Article  PubMed  CAS  Google Scholar 

  11. Buchko GW, Ni S, Thrall BD et al. Structural features of the minimal DNA binding domain (M98-F219) of human nucleotide excision repair protein XPA. Nucleic Acids Res 1998; 26:2779–2788.

    Article  PubMed  CAS  Google Scholar 

  12. Camenisch U, Dip R, Schumacher SB et al. Recognition of helical kinks by xeroderma pigmentosum group A protein triggers DNA excision repair. Nat Struct Mol Biol. 2006; 13:278–284.

    Article  PubMed  CAS  Google Scholar 

  13. Cleaver JE, States JC. The DNA damage-recognition problem in human and other eukaryotic cells: the XPA damage binding protein. Biochem J 1997; 328:1–12.

    PubMed  CAS  Google Scholar 

  14. De Laat WL, Appeldoorn E, Jaspers NG et al. DNA structural elements required for ERCC1-XPF endonuclease activity. J Biol Chem 1998; 273:7835–7842.

    Article  PubMed  Google Scholar 

  15. De Laat WL, Appeldoorn E, Sugasawa E et al. DNA binding polarity of human replication protein A positions nucleases in nucleotide excision repair. Genes Dev 1998; 12:2598–2609.

    Article  PubMed  Google Scholar 

  16. De Laat WL, Jaspers NG, Hoeijmakers JHJ. Molecular mechanism of nucleotide excision repair. Genes Dev 1999; 13:768–785.

    Article  PubMed  Google Scholar 

  17. Evans E, Fellows J, Coffer A et al. Open complex formation around a lesion during nucleotide excision repair provides a structure for cleavage by human XPG protein. EMBO J 1997; 16:625–638.

    Article  PubMed  CAS  Google Scholar 

  18. Fitch ME, Nakajima S, Yasui A et al. In vivo recruitment of XPC to UV-induced cyclobutane pyrimidine dimers by the DDB2 gene product. J Biol Chem 2003; 278:46906–46910.

    Article  PubMed  CAS  Google Scholar 

  19. Fousteri M, Vermeulen W, van Zeeland AA et al. Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo. Mol Cell 2006; 23:471–482.

    Article  PubMed  CAS  Google Scholar 

  20. Friedberg EC, Aquilera A, Gellert M et al. DNA repair: from molecular mechanism to human disease. DNA Rep 2006; 5:986–996.

    Article  CAS  Google Scholar 

  21. Gillet LC, Scharer OD. Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev 2006; 106:253–276.

    Article  PubMed  CAS  Google Scholar 

  22. Hanawalt PC. Subpathways of nucleotide excision repair and their regulation. Oncogene 2002; 21:8949–8956.

    Article  PubMed  CAS  Google Scholar 

  23. He Z, Henricksen LA, Wold MS et al. RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature 1995; 374:566–569.

    Article  PubMed  CAS  Google Scholar 

  24. Hermanson-Miller IL, Turchi JJ. Strand-specific binding of RPA and XPA to damaged duplex DNA. Biochemistry 2002; 41:2402–2408.

    Article  PubMed  CAS  Google Scholar 

  25. Hess NJ, Buchko GW Conradson SD et al. Human nucleotide excision repair protein XPA: extended X-ray absorption fine-structure evidence for a metal-binding domain. Prot Sci 1998; 7:1970–1975.

    Article  CAS  Google Scholar 

  26. Hoogstraten D, Nigg AL, Heath H et al. Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair in vivo. Mol Cell 2002; 10:1163–1174.

    Article  PubMed  CAS  Google Scholar 

  27. Houtsmuller AB, Rademakers S, Nigg AL et al. Action of DNA repair endonuclease ERCC1/XPF in living cells. Science 1999; 284:958–961.

    Article  PubMed  CAS  Google Scholar 

  28. Huang JC, Svoboda D, Reardon JT et al. Human nucleotide excision nuclease removes thymine dimers from DNA by incising the 22nd phosphodiester bond 5′ and the 6th phosphodiester bond 3′ to the photodimer. Proc Natl Acad Sci USA 1992; 89:3664–3668.

    Article  PubMed  CAS  Google Scholar 

  29. Iakoucheva LM, Kimzey AL, Masselon CD et al. Aberrant mobility phenomena of the DNA repair protein XPA. Prot Sci 2001; 10:1353–1362.

    Article  CAS  Google Scholar 

  30. Ikegami T, Kuraoka I, Saijo M et al. Resonance assignments, solution structure and backbone dynamics of the DNA-and RPA-binding domain of human repair factor XPA. J Biochem 1999; 125:495–506.

    PubMed  CAS  Google Scholar 

  31. Ikegami T, Kuraoka I, Saijo M et al. Solution structure of the DNA-and RPA-binding domain of the human repair factor XPA. Nat Struct Biol 1998; 5:701–706.

    Article  PubMed  CAS  Google Scholar 

  32. Isaacs RJ, Spielmann HP. A model for initial DNA lesion recognition by NER and MMR based on local conformational flexibility. DNA Rep 2004; 3:455–464.

    Article  CAS  Google Scholar 

  33. Jones CJ, Wood RD. Preferential binding of the xeroderma pigmentosum group A complementing protein to damaged DNA. Biochemistry 1993; 32:12096–12104.

    Article  PubMed  CAS  Google Scholar 

  34. Kim C, Paulus BF, Wold MS. Interactions of human replication protein A with oligonucleotides. Biochemistry 1994; 33:14197–14206.

    Article  PubMed  CAS  Google Scholar 

  35. Kobayashi T, Takeuchi S, Saijo M et al. Mutational analysis of a function of xeroderma pigmentosum group A (XPA) protein in strand-specific repair. Nucleic Acids Res 1998; 26:4662–4668.

    Article  PubMed  CAS  Google Scholar 

  36. Köberle B, Roginskaya V, Wood RD. XPA protein as a limiting factor for nucleotide excision repair and UV sensitivity in human cells. DNA Rep 2006; 5:641–648.

    Article  CAS  Google Scholar 

  37. Kuraoka I, Bender C, Romieu A et al. Removal of oxygen free-radical-induced 5′, 8-purine cyclodeoxynucleosides from DNA by the nucleotide excision-repair pathway in human cells. Proc Natl Acad Sci USA 2000; 97:3832–3837.

    Article  PubMed  CAS  Google Scholar 

  38. Kuraoka I, Morita EH, Saijo M et al. Identification of a damagcd-DNA binding domain of the XPA protein. Mutat Res 1996; 362:87–95.

    PubMed  Google Scholar 

  39. Lainé JP, Egly JM. Initiation of DNA repair mediated by a stalled RNA polymerase IIO. EMBO J 2006; 25:387–397.

    Article  PubMed  CAS  Google Scholar 

  40. Lao Y, Gomes XV, Ren Y et al. Replication protein A interactions with DNA. Part III. Molecular basis of recognition of damaged DNA. Biochemistry 2000; 39:850–859.

    Article  PubMed  CAS  Google Scholar 

  41. Layher SK, Cleaver JE. Quantification of XPA gene expression levels in human and mouse cell lines by competitive RT-PCR. Mutat Res 1997; 383:9–19.

    PubMed  CAS  Google Scholar 

  42. Lee JH, Park CJ, Arunkumar AI. NMR study on the interaction between RPA and DNA decamer containing cis-syn cyclobutane pyrimidine dimer in the presence of XPA: implication for damage verification and strand-specific dual incision in nucleotide excision repair. Nucl Acids Res 2003; 31:4747–4754.

    Article  PubMed  CAS  Google Scholar 

  43. Li L, Elledge SJ, Peterson CA et al. Specific association between the human DNA repair proteins XPA and ERCC1. Proc Natl Acad Sci USA 1994; 91:5012–5016.

    Article  PubMed  CAS  Google Scholar 

  44. Li L, Lu X, Peterson CA et al. An interaction between the DNA repair factor XPA and replication protein A appears essential for nucleotide excision repair. Mol Cell Biol 1995; 15:5396–5402.

    PubMed  CAS  Google Scholar 

  45. Li L, Peterson CA, Lu X et al. Mutations in XPA that prevent association with ERCC1 are defective in nucleotide excision repair. Mol Cell Biol 1995; 15:1993–1998.

    PubMed  CAS  Google Scholar 

  46. Lin JJ, Sancar A. (A)BC excinuclease: the Escherichia coli nucleotide excision repair enzyme. Mol Microbiol 1992; 6:2219–2224.

    Article  PubMed  CAS  Google Scholar 

  47. Liu Y, Liu Y, Yang Z et al. Cooperative interaction of human XPA stabilizes and enhances specific binding of XPA to DNA damage. Biochemistry 2005; 17:7361–7368.

    Article  CAS  Google Scholar 

  48. Liu Y, Yang Z, Utzat CD et al. Interactions of human replication protein A with single-stranded DNA adducts. Biochem J 2006; 385:519–526.

    Article  CAS  Google Scholar 

  49. Matsunaga T, Park CH, Bessho T et al. Replication protein A confers structure-specific endonuclease activities to the XPF-ERCC1 and XPG subunits of human DNA repair excision nuclease. J Biol Chem 1996; 271:11047–11050.

    Article  PubMed  CAS  Google Scholar 

  50. Mellon I. Transcription-coupled repair: a complex affair. Mutat Res 2005; 577:155–161.

    PubMed  CAS  Google Scholar 

  51. Mills JB, Hagerman PJ. Origin of the intrinsic rigidity of DNA. Nucleic Acids Res 2004; 32:4055–4059.

    Article  PubMed  CAS  Google Scholar 

  52. Missura M, Buterin T, Hindges R et al. Double-check probing of DNA bending and unwinding by XPA-RPA: an architectural function in DNA repair. EMBO J 2001; 20:3554–3564.

    Article  PubMed  CAS  Google Scholar 

  53. Miyamoto I, Miura N, Niwa H et al. Mutational analysis of the structure and function of the xeroderma pigmentosum group A complementing protein. Identification of essential domains for nuclear localization and DNA excision repair. J Biol Chem 1992; 267:19786–19789.

    Google Scholar 

  54. Moser J, Volker M, Kool H et al. The UV-damaged DNA binding protein mediates efficient targeting of the nucleotide excision repair complex to UV-induced photo lesions. DNA Rep 2005; 4:571–582.

    Article  CAS  Google Scholar 

  55. Mu D, Park CH, Matsunaga T et al. Reconstitution of human DNA repair excision nuclease in a highly defined system. J Biol Chem 1995; 270:2415–2418.

    Article  PubMed  CAS  Google Scholar 

  56. Nadassy K, Wodak SJ, Janin J. Structural features of protein-nucleic acid recognition sites. Biochemistry 1999; 38:7199–7126.

    Article  Google Scholar 

  57. Naegeli H. Mechanisms of DNA damage recognition in mammalian nucleotide excision repair. FASEB J 1995; 9:1043–1050.

    PubMed  CAS  Google Scholar 

  58. Nagai A, Saijo M, Kuraoka I et al. Enhancement of damage-specific DNA binding of XPA by interaction with the ERCC1 DNA repair protein. Biochem Biophys Res Commun 1995; 211:960–966.

    Article  PubMed  CAS  Google Scholar 

  59. Nakatsu Y, Asahina H, Citterio E et al. XAB2, a novel tetratricopeptide repeat protein involved in transcription-coupled DNA repair and transcription. J Biol Chem 2000; 275:34931–34937.

    Article  PubMed  CAS  Google Scholar 

  60. Nishi R, Okuda Y, Watanabe E et al. Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein. Mol Cell Biol 2005; 25:5664–6574.

    Article  PubMed  CAS  Google Scholar 

  61. Nitta M, Saijo M, Kodo N et al. A novel cytoplasmic GTPase XAB1 interacts with DNA repair protein XPA. Nucl Acids Res 2000; 28:4212–4218.

    Article  PubMed  CAS  Google Scholar 

  62. O’Donovan A, Davies AA, Moggs JG et al. XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature 1994; 371:432–435.

    Article  PubMed  CAS  Google Scholar 

  63. Park CH, Mu D, Reardon JT et al. The general transcription-repair factor TFIIH is recruited to the excision repair complex by the XPA protein independent of the TFIIE transcription factor. J Biol Chem 1995; 270:4896–4902.

    Article  PubMed  CAS  Google Scholar 

  64. Park CH, Sancar A. Formation of a ternary complex by human XPA, ERCC1 and ERCC4 (XPF) excision repair proteins. Proc Nad Acad Sci USA 1994; 91:5017–5021.

    Article  CAS  Google Scholar 

  65. Patrick SM, Turchi JJ. Xeroderma pigmentosum complementation group A protein (XPA) modulates RPA-DNA interactions via enhanced complex stability and inhibition of strand separation activity. J Biol Chem 2002; 277:16096–16101.

    Article  PubMed  CAS  Google Scholar 

  66. Politi A, Moné MJ, Houtsmuller AB et al. Mathematical modeling of nucleotide excision repair reveals efficiency of sequential assembly strategies. Mol Cell 2005; 19:679–690.

    Article  PubMed  CAS  Google Scholar 

  67. Rademakers S, Volker M, Hoogstraten D et al. Xeroderma pigmentosum group A protein loads as a separate factor onto DNA lesions. Mol Cell Biol 2003; 23:5755–5767.

    Article  PubMed  CAS  Google Scholar 

  68. Reardon JT, Bessho T, Kung HC et al. In vitro repair of oxidative DNA damage by human nucleotide excision repair system: possible explanation for neurodegeneration in xeroderma pigmentosum patients. Proc Natl Acad Sci USA 1997; 9463–9468.

    Google Scholar 

  69. Reardon JT, Nichols AF, Keeney S et al. Comparative analysis of binding of human damaged DNA-binding protein (XPE) and Escherichia coli damage recognition protein (UvrA) to the major ultraviolet photoproducts: T[c,s], T[t,s]T, T[6-4] and T[Dewar]T. J Biol Chem 1993; 268:21301–21308.

    PubMed  CAS  Google Scholar 

  70. Reardon JT, Sancar A. Recognition and repair of the cyclobutane thymine dimer, a major cause of skin cancers, by the human excision nuclease. Genes Dev 2003; 17:2539–2551.

    Article  PubMed  CAS  Google Scholar 

  71. Reardon JT, Sancar A. Repair of DNA-polypeptide crosslinks by human excision nuclease. Proc Natl Acad Sci USA 2006; 103:4056–4061.

    Article  PubMed  CAS  Google Scholar 

  72. Riedl T, Hanaoka F, Egly JM. The comings and goings of nucleotide excision repair factors on damaged DNA. EMBO J 2003; 22:5293–5303.

    Article  PubMed  CAS  Google Scholar 

  73. Robins P, Jones CJ, Biggerstaff M et al. Complementation of DNA repair in xeroderma pigmentosum group A cell extracts by a protein with affinity for damaged DNA. EMBO J 1991; 10:3913–3921.

    PubMed  CAS  Google Scholar 

  74. Saijo M, Kuraoka I, Masutani C et al. Sequential binding of DNA repair proteins RPA and ERCC1 to XPA in vitro. Nucleic Acids Res 1996; 24:4719–4724.

    Article  PubMed  CAS  Google Scholar 

  75. Sancar A. DNA excision repair. Annu Rev Biochem 1996; 65:43–81.

    Article  PubMed  CAS  Google Scholar 

  76. Sarker AH, Tsutakawa SE, Kostek S et al. Recognition of RNA polymerase II and transcription bubbles by XPG, CSB and TFIIH: insights for transcription-coupled repair and Cockayne syndrome. Mol Cell 2005; 20:187–19.

    Article  PubMed  CAS  Google Scholar 

  77. Satokata I, Iwa K, Matsuda T et al. Genomic characterization of the human DNA excision repair-controlling gene XPAC. Gene 1993; 136:345–348.

    Article  PubMed  CAS  Google Scholar 

  78. Shi Q, Thresher R, Sancar A et al. Electron microscopic study of (A)BC excinuclease: DNA is sharply bent in the UvrB-DNA complex. J Mol Biol 1992; 219:425–432.

    Article  Google Scholar 

  79. Sijbers AM, de Laat WL, Ariza RR et al. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell 1996; 86:811–822.

    Article  PubMed  CAS  Google Scholar 

  80. Sugasawa K, Masutani C, Uchida A et al. hHR23B, a human Rad23 homolog, stimulates XPC protein in nucleotide excision repair in vitro. Mol Cell Biol 1996; 16:4852–4861.

    PubMed  CAS  Google Scholar 

  81. Sugasawa K, Ng JM, Masutani C et al. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell 1998; 2:223–232.

    Article  PubMed  CAS  Google Scholar 

  82. Tanaka K, Miura N, Satokata I et al. Analysis of a human DNA excision repair gene involved in group A xeroderma pigmentosum and containing a zinc-finger domain. Nature 1990; 348:13–14.

    Article  Google Scholar 

  83. Tanaka K, Satokata I, Ogita Z et al. Molecular cloning of a mouse DNA repair gene that complements the defect of group-A xeroderma pigmentosum. Proc Natl Acad Sci USA 1989; 86:5512–5516.

    Article  PubMed  CAS  Google Scholar 

  84. Thoma BS, Vasquez KM. Critical DNA damage recognition functions of XPC-hHR23B and XPA-RPA in nucleotide excision repair. Mol Carcinog 2003; 38:1–13.

    Article  PubMed  CAS  Google Scholar 

  85. Thoma BS, Wakasugi M, Christensen J et al. Human XPC-hHR23B interacts with XPA-RPA in the recognition of triplex-directed psoralen DNA interstrand crosslinks. Nucl Acids Res 2005; 33:2993–3001.

    Article  PubMed  CAS  Google Scholar 

  86. Vassylyev DG, Kashiwagi T, Mikami Y et al. Atomic model of a pyrimidine dimer excision repair enzyme complexed with a DNA substrate: structural basis for damaged DNA recognition. Cell 1995; 83:773–782.

    Article  PubMed  CAS  Google Scholar 

  87. Volker M, Moné MJ, Karmakar P et al. Sequential assembly of the nucleotide excision repair factors in vivo. Mol Cell 2001; 8:213–224.

    Article  PubMed  CAS  Google Scholar 

  88. Wakasugi M, Sancar A. Order of assembly of human DNA repair excision nuclease. J Biol Chem 1999; 274:18759–18768.

    Article  PubMed  CAS  Google Scholar 

  89. Wold MS. Replication protein A: a heterotrimeric, single-stranded Dann-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 1997; 66:61–66.

    Article  PubMed  CAS  Google Scholar 

  90. Wood RD. Nucleotide excision repair in mammalian cells. J Biol Chem 1997; 272:23465–23468.

    Article  PubMed  CAS  Google Scholar 

  91. Wu X, Shell SM, Liu Y et al. ATR-dependent checkpoint modulates XPA nuclear import in response to UV irradiation. Oncogene 2006:Epub ahead of print.

    Google Scholar 

  92. Wu X, Shell SM, Yang Z et al. Phosphorylation of nucleotide excision repair factor xeroderma pigmentosum group A by ataxia telangiectasia mutated and Rad3-related-dependent checkpoint pathway promotes cell survival in response to UV irradiation. Cancer Res 2006; 66:2997–3005.

    Article  PubMed  CAS  Google Scholar 

  93. Yang ZG, Liu Y, Mao LY et al. Dimerization of human XPA and formation of XPA2-RPA protein complex. Biochemistry 2002; 41:13012–13020.

    Article  PubMed  CAS  Google Scholar 

  94. You JS, Wang M, Lee SH. Biochemical analysis of the damage recognition process in nucleotide excision repair. J Biol Chem 2003; 278:7476–7485.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Camenisch, U., Nägeli, H. (2008). XPA Gene, Its Product and Biological Roles. In: Ahmad, S.I., Hanaoka, F. (eds) Molecular Mechanisms of Xeroderma Pigmentosum. Advances in Experimental Medicine and Biology, vol 637. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09599-8_4

Download citation

Publish with us

Policies and ethics