Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 637))

Abstract

The hypersensitivity of DNA repair deficient xeroderma pigmentosum (XP) patients to solar irradiation results in the development of high levels of squamous and basal cell carcinomas as well as malignant melanomas in early childhood. Indeed, XP presents a unique model for analysing the effects of unrepaired DNA lesions in skin carcinogenesis. The skin cancer predisposition, observed in XP patients, is due to the mutator gene activity of XP cells which lead to high levels of UV specific modifications of crucial regulatory genes in skin cells leading to cancer. Thus, the high levels of UV specific mutations, seen in oncogenes and tumor suppressor genes, which have been characterized in XP tumors, clearly demonstrate the major role of the UV component of sunlight in skin cancer development. The UV specific C to T and the tandem CC to TT UV signature transition mutations found in XP tumors are located at bipyrimidine sequences, the preferred UV targets in DNA. The same UV specific alterations are seen in key regulatory genes in sporadic skin cancers but at lower frequencies than those found in XP tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Friedberg EC, Aguilera A, Gellert M et al. DNA repair: from molecular mechanism to human disease. DNA Repair (Amst) 2006;5(8):986–996.

    Article  CAS  Google Scholar 

  2. Cleaver JE. Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nat Rev Cancer 2005;5(7):564–573.

    Article  PubMed  CAS  Google Scholar 

  3. Lehmann AR. DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Biochimie 2003;85(11):1101–1111.

    Article  PubMed  CAS  Google Scholar 

  4. van Steeg H, Kraemer KH. Xeroderma pigmentosum and the role of UV-induced DNA damage in skin cancer. Mol Med Today 1999;5(2):86–94.

    Article  PubMed  Google Scholar 

  5. Kraemer KH, Lee MM, Scotto J. Xeroderma pigmentosum. Cutaneous, ocular and neurologic abnormalities in 830 published cases. Arch Dermatol 1987;123(2):241–250.

    Article  PubMed  CAS  Google Scholar 

  6. Boukamp P. Nonmelanoma skin cancer: what drives tumor development and progression? Carcinogenesis 2005;26(10):1657–1667.

    Article  PubMed  CAS  Google Scholar 

  7. Melnikova VO, Ananthaswamy HN. Cellular and molecular events leading to the development of skin cancer. Mutat Res 2005;571(1–2):91–106.

    PubMed  CAS  Google Scholar 

  8. Daya-Grosjean L, Sarasin A. The role of UV induced lesions in skin carcinogenesis: an overview of oncogene and tumor suppressor gene modifications in xeroderma pigmentosum skin tumors. Mutat Res 2005;571(1–2):43–56.

    PubMed  CAS  Google Scholar 

  9. Kraemer KH. Nucleotide excision repair genes involved in xeroderma pigmentosum. Jpn J Cancer Res 1994;85(2):inside front cover.

    Google Scholar 

  10. Copeland NE, Hanke CW, Michalak JA. The molecular basis of xeroderma pigmentosum. Dermatol Surg 1997;23(6):447–455.

    Article  PubMed  CAS  Google Scholar 

  11. Hirai Y, Kodama Y, Moriwaki S et al. Heterozygous individuals bearing a founder mutation in the XPA DNA repair gene comprise nearly 1% of the Japanese population. Mutat Res 2006;601(1–2):171–178.

    PubMed  CAS  Google Scholar 

  12. Kraemer KH, Levy DD, Parris CN et al. Xeroderma pigmentosum and related disorders: examining the linkage between defective DNA repair and cancer. J Invest Dermatol 1994;103(5 Suppl):96S–101S.

    Article  PubMed  CAS  Google Scholar 

  13. Oh KS, Khan SG, Jaspers NG et al. Phenotypic heterogeneity in the XPB DNA helicase gene (ERCC3): xeroderma pigmentosum without and with Cockayne syndrome. Hum Mutat 2006;27(11):1092–1103.

    Article  PubMed  CAS  Google Scholar 

  14. Moussaid L, Benchikhi H, Boukind EH et al. Cutaneous tumors during xeroderma pigmentosum in Morocco: study of 120 patients. Ann Dermatol Venereol. 2004;131(1 Pt 1):29–33.

    Article  PubMed  CAS  Google Scholar 

  15. Khatri ML, Bemghazil M, Shafi M et al. Xeroderma pigmentosum in Libya. Int J Dermatol 1999;38(7):520–524.

    Article  PubMed  CAS  Google Scholar 

  16. Khatri ML, Shafi M, Mashina A. Xeroderma pigmentosum. A clinical study of 24 Libyan cases. J Am Acad Dermatol 1992;26(1):75–78.

    Article  PubMed  CAS  Google Scholar 

  17. Bouadjar B, Ait-Belkacem F, Daya-Grosjean L et al. Xeroderma pigmentosum. A study in 40 Algerian patients. Ann Dermatol Venereol 1996;123(5):303–306.

    PubMed  CAS  Google Scholar 

  18. Thielmann HW, Popanda O, Edler L et al. Clinical symptoms and DNA repair characteristics of xeroderma pigmentosum patients from Germany. Cancer Res 1991;51(13):3456–3470.

    PubMed  CAS  Google Scholar 

  19. Thielmann HW. Xeroderma pigmentosum patients from Germany (the Mannheim XP collection): clinical and biochemical characteristics. Recent Results Cancer Res 1993;128:275–297.

    PubMed  CAS  Google Scholar 

  20. Moriwaki S, Kraemer KH. Xeroderma pigmentosum—bridging a gap between clinic and laboratory. Photodermatol Photoimmunol Photomed 2001;17(2):47–54.

    Article  PubMed  CAS  Google Scholar 

  21. Kennedy C, Bajdik CD, Willemze R et al. The influence of painful sunburns and lifetime sun exposure on the risk of actinic keratoses, seborrheic warts, melanocytic nevi, atypical nevi and skin cancer. J Invest Dermatol 2003;120(6):1087–1093.

    Article  PubMed  CAS  Google Scholar 

  22. Takebe H, Nishigori C, Tatsumi K. Melanoma and other skin cancers in xeroderma pigmentosum patients and mutation in their cells. J Invest Dermatol 1989;92(5 Suppl):236S–238S.

    Article  PubMed  CAS  Google Scholar 

  23. Kraemer KH, Lee MM, Andrews AD et al. The role of sunlight and DNA repair in melanoma and nonmelanoma skin cancer. The xeroderma pigmentosum paradigm. Arch Dermatol 1994;130(8):1018–1021.

    Article  PubMed  CAS  Google Scholar 

  24. Pfeifer GP, You YH, Besaratinia A. Mutations induced by ultraviolet light. Mutat Res 2005;571(1–2):19–31.

    PubMed  CAS  Google Scholar 

  25. Halliday GM. Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis. Mutat Res 2005;571(1–2):107–120.

    PubMed  CAS  Google Scholar 

  26. Cadet J, Sage E, Douki T. Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res 2005;571(1–2):3–17.

    PubMed  CAS  Google Scholar 

  27. Vuillaume M, Daya-Grosjean L, Vincens P et al. Striking differences in cellular catalase activity between two DNA repair-deficient diseases: xeroderma pigmentosum and trichothiodystrophy. Carcinogenesis 1992;13(3):321–328.

    Article  PubMed  CAS  Google Scholar 

  28. Arbault S, Sojic N, Bruce D et al. Oxidative stress in cancer prone xeroderma pigmentosum fibroblasts. Real-time and single cell monitoring of superoxide and nitric oxide production with microelectrodes. Carcinogenesis 2004;25(4):509–515.

    Article  PubMed  CAS  Google Scholar 

  29. Daya-Grosjean L, Dumaz N, Sarasin A. The specificity of p53 mutation spectra in sunlight induced human cancers. J Photochem Photobiol B 1995;28(2):115–124.

    Article  PubMed  CAS  Google Scholar 

  30. Ehrhart JC, Gosselet FP, Culerrier RM et al. UVB-induced mutations in human key gatekeeper genes governing signalling pathways and consequences for skin tumourigenesis. Photochem Photobiol Sci 2003;2(8):825–834.

    Article  PubMed  CAS  Google Scholar 

  31. Olivier M, Hussain SP, Caron de Fromentel C et al. TP53 mutation spectra and load: a tool for generating hypotheses on the etiology of cancer. IARC Sci Publ 2004;(157):247–270.

    PubMed  Google Scholar 

  32. Giglia-Mari G, Sarasin A. TP53 mutations in human skin cancers. Hum Mutat 2003;21(3):217–228.

    Article  PubMed  CAS  Google Scholar 

  33. Spatz A, Giglia-Mari G, Benhamou S et al. Association between DNA repair-deficiency and high level of p53 mutations in melanoma of Xeroderma pigmentosum. Cancer Res 2001;61(6):2480–2486.

    PubMed  CAS  Google Scholar 

  34. D’Errico M, Calcagnile A, Canzona F et al. UV mutation signature in tumor suppressor genes involved in skin carcinogenesis in xeroderma pigmentosum patients. Oncogene 2000;19(3):463–467.

    Article  PubMed  CAS  Google Scholar 

  35. Liggett WH, Jr., Sidransky D. Role of the p16 tumor suppressor gene in cancer. J Clin Oncol 1998;16(3):1197–1206.

    PubMed  CAS  Google Scholar 

  36. Soufir N, Moles JP, Vilmer C et al. P16 UV mutations in human skin epithelial tumors. Oncogene 1999;18(39):5477–5481.

    Article  PubMed  CAS  Google Scholar 

  37. Soufir N, Ribojad M, Magnaldo T et al. Germline and somatic mutations of the INK4a-ARF gene in a xeroderma pigmentosum group C patient. J Invest Dermatol 2002;119(6):1355–1360.

    Article  PubMed  CAS  Google Scholar 

  38. Brown VL, Harwood CA, Crook T et al. p16INK4a and p14ARF tumor suppressor genes are commonly inactivated in cutaneous squamous cell carcinoma. J Invest Dermatol 2004;122(5):1284–1292.

    Article  PubMed  CAS  Google Scholar 

  39. Soufir N, Daya-Grosjean L, de La Salmoniere P et al. Association between INK4a-ARF and p53 mutations in skin carcinomas of xeroderma pigmentosum patients. J Natl Cancer Inst 2000;92(22):1841–1847.

    Article  PubMed  CAS  Google Scholar 

  40. Lynch HT, Shaw TG, Lynch JF. Inherited predisposition to cancer: a historical overview. Am J Med Genet C Semin Med Genet 2004;129(1):5–22.

    Article  Google Scholar 

  41. Daya-Grosjean L, Robert C, Drougard C et al. High mutation frequency in ras genes of skin tumors isolated from DNA repair deficient xeroderma pigmentosum patients. Cancer Res 1993;53(7):1625–1629.

    PubMed  CAS  Google Scholar 

  42. Couve-Privat S, Bouadjar B, Avril MF et al. Significantly high levels of ultraviolet-specific mutations in the smoothened gene in basal cell carcinomas from DNA repair-deficient xeroderma pigmentosum patients. Cancer Res 2002;62(24):7186–7189.

    PubMed  CAS  Google Scholar 

  43. Couve-Privat S, Le Bret M, Traiffort E et al. Functional analysis of novel sonic hedgehog gene mutations identified in basal cell carcinomas from xeroderma pigmentosum patients. Cancer Res 2004;64(10):3559–3565.

    Article  PubMed  CAS  Google Scholar 

  44. Keijzer W, Mulder MP, Langeveld JC et al. Establishment and characterization of a melanoma cell line from a xeroderma pigmentosum patient: activation of N-ras at a potential pyrimidine dimer site. Cancer Res 1989;49(5):1229–1235.

    PubMed  CAS  Google Scholar 

  45. Daya-Grosjean L, Couve-Privat S. Sonic hedgehog signaling in basal cell carcinomas. Cancer Lett 2005;225(2):181–192.

    Article  PubMed  CAS  Google Scholar 

  46. Bodak N, Queille S, Avril MF et al. High levels of patched gene mutations in basal-cell carcinomas from patients with xeroderma pigmentosum. Proc Natl Acad Sci USA 1999;96(9):5117–5122.

    Article  PubMed  CAS  Google Scholar 

  47. Nishigori C, Yarosh DB, Donawho C et al. The immune system in ultraviolet carcinogenesis. J Investig Dermatol Symp Proc 1996;1(2):143–146.

    PubMed  CAS  Google Scholar 

  48. Gaspari AA, Fleisher TA, Kraemer KH. Impaired interferon production and natural killer cell activation in patients with the skin cancer-prone disorder, xeroderma pigmentosum. J Clin Invest 1993;92(3):1135–1142.

    Article  PubMed  CAS  Google Scholar 

  49. Suzuki H, Kalair W, Shivji GM et al. Impaired ultraviolet-B-induced cytokine induction in xeroderma pigmentosum fibroblasts. J Invest Dermatol 2001;117(5):1151–1155.

    Article  PubMed  CAS  Google Scholar 

  50. Majewski S, Jablonska S. Epidermodysplasia verruciformis as a model of human papillomavirus-induced genetic cancer of the skin. Arch Dermatol 1995;131(11):1312–1318.

    Article  PubMed  CAS  Google Scholar 

  51. Bordea C, Wojnarowska F, Millard PR et al. Skin cancers in renal-transplant recipients occur more frequently than previously recognized in a temperate climate. Transplantation 2004;77(4):574–579.

    Article  PubMed  CAS  Google Scholar 

  52. Luron L, Avril MF, Sarasin A et al. Prevalence of human papillomavirus in skin tumors from repair deficient xeroderma pigmentosum patients. Cancer Lett 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Daya-Grosjean, L. (2008). Xeroderma Pigmentosum and Skin Cancer. In: Ahmad, S.I., Hanaoka, F. (eds) Molecular Mechanisms of Xeroderma Pigmentosum. Advances in Experimental Medicine and Biology, vol 637. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09599-8_3

Download citation

Publish with us

Policies and ethics